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In this paper we studied the shaping and evolution of singular beams bearing optical vortices with fractional 
topological charges both in uniform and non-uniform anisotropic media. Starting from representation of the 
fractional-order vortex states as a superposition of an infinite number of integer-order vortices with certain 
energy distributions (the vortex spectra) we showed that the smooth wave front of the fractional vortex beam 
can either decay into an asymmetric array of integer-order vortices or, vice versa, the array of optical vortices 
can form a smooth helicoid-shaped wave front. We showed that by superimposing a finite number of the 
fractional-order vortex beams one can shape symmetric singular beams with arbitrary valued topological 
charges. We demonstrated that in biaxial crystals under the condition of the conical diffraction the fractional-
order vortices are unstable. We also demonstrated that the circular fiber array with a space-variant 
birefringence is an appropriate medium for fractional-order vortex beams. 
Keywords: optical vortices, fractional topological charges, the fractional-order supermodes, hidden phase, the 
array of optical vortices. 
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INTRODUCTION 

The unexpected prediction of vortices with half of a quantum unit of circulation in 

superfluid 3
He  in the 1970s [1] at first provoked bewilderment among physicists because 

the problem was far from an obvious understanding. The fact is that the quantized 
circulation is connected with a superfluid flow and can have integer values only. For a 
long time, that prediction had been considered as a mathematical misunderstanding until 
J. Jang et. al. [2−4] have experimentally revealed half-quantum vortices in different 
condensed-matter systems from Bose-Einstein condensates to spin-triplet 
superconductors. To match the experimental results of the half-integer circulations with a 
generally accepted conception, the deficient phase π  (a half-integer order of the 
circulation) came to be called the “hidden phase” that is not connected with the circulation 
of the mass current but is induced by the circulation of the spin current in Cooper pairs 
[4]. In other words, the spin-orbit interaction plays here the key part. 

At last, there appeared a new approach for describing such physical processes based 
on analogy between spinor Bose-Einstein condensates and singular optical systems (see 
e.g. [5] and references therein). 

At the same time, the optical states with fractional orders of the energy circulation are 
not so a drastic problem for flows of optical fields both in scalar and vector cases as it 
turns out to be for the superfluid cases (Fermi liquids). Nevertheless, propagation 
processes of singular beams bearing optical vortices with fractional-order topological 
charges face also the key questions of a structural stability of optical states under 
propagation or other negligibly small perturbations. 
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Past recent years of singular optic’s [6] development have been marked by the surge 
of interest to optical vortices with fractional topological charges [7, 18]. The first 
announcement of the fractional-order vortex instability in principle was reported by 
Soskin et al [7, 8] for the vortices produced by a computer-generated hologram while the 
vortices propagate in free space. The authors observed experimentally evolution of vortex 
beams with different half-integer order topological charges. If the vortex beam at the 
hologram has a nearly C-shaped form, far from the hologram the beam breaks out onto a 
great number of integer-order vortices. 

Later, Berry starting from analogy with the Aharonov-Bohm effect in quantum 
mechanics and hydrodynamics [9] has theoretically shown the splitting of an optical 
vortex of the fractional-order into infinite chain of the integer-order vortices [10]. He 
caught sight of a deep analogy between the quantum and the optical singularities. Besides, 
Berry denoted that the fractional-order vortex propagation results inevitably in decaying 
the initial phase structure in free space, i.e. the fractional-order vortex beams are 
structurally unstable ones under the propagation. 

These reports stimulated a new chain of theoretical and experimental investigations 
[11−15] that confirmed the decay of fractional-order vortices into an infinite number of 
integer-order vortices. Although most of mathematical models of the fractional vortices is 
based on the Bessel-Gaussian beam presentation (see e.g. [13, 14], authors of the paper 
[15] supplemented the analysis with the Laguerre-Gaussian beams. Difference between 
these approaches lies in different contribution of the individual integer-order vortices in 
the complex field when the fractional-order beam evolves through the optical medium. 
Some typical features of such dynamical transformations were considered experimentally 
in the recent paper [18]. 

On the other hand, authors of the paper [17] found out a strange behavior of the 
vortex-beam with a half-order topological charge for the erf-Gaussian ( erf G− ) beams. 

The smooth wave front of the fractional vortex beam can either decay into an asymmetric 
array of integer-order vortices or, vice versa, the array of optical vortices can be gathered 
together forming a smooth wave front with a helicoid-shaped phase distribution. 

Authors of the paper [21] remarked also unusual behavior of the orbital angular 

momentum 
z

l  (OAM). At first glance it seems that the fractional-order vortex topological 

charge is an indicator of the OAM of singular beams at least records nearest values to its 
physical quantity. In some first papers [14, 27] authors obtained a nearly linear 

dependence between 
z

l  and a topological charge p  on the base of assessed theoretical 

results. However, the computer simulation of the process and physical analysis [21] 

revealed a complex behavior of the function ( )z
l p . Small values of the charge 10p <  

correspond to a nearly linear dependence 
z

l p  with a small amplitude of oscillations. 

The growth of the value 10p >  results in increasing the amplitude of oscillations 

between the values ( )int
z

l eger p=  and 0p = . The presented results are evidence of a 

complex interference coupling between a great numbers of the integer-order vortices in a 
fractional-order vortex beam. 
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One more unexpected property of the fractional-order vortex beams revealed the 
authors of the paper [16]. They tried to answer experimentally the question: can the 
fractional-order vortex-beams control the states of the integer-order ones? They achieved 
a success using two beams: the pump and probe ones. 

The pump beam is of a topological dipole field consisting of two ½-order vortices 
with opposite signs of their charges. The pump beam lays a course in a nonlinear medium 
for the probe singular beam of a smaller intensity. Changing parameters of the dipole they 
can steer the state of the probe beam. In fact, the fractional-order topological dipole is not 
destroyed inside the nonlinear medium forming the waveguide channel for the probe 
beam. 

1. FREE SPACE PROPAGATION OPTICAL QUARKS 

As a rule, a beam field in a complex optical system contains a lot of simple 
composition Laguerre-Gaussian (LG), Hermit-Gaussian (HG), Bessel-Gaussian (BG) etc 
beams bearing an energy-limited optical flux. Each element of these mathematical 
constructions is an optical vortex-beam bearing an integer-order topological charge. Some 
of such beam combinations possess of extraordinary properties. The singular beam 
behavior depends on the energy distribution among the integer-order vortices and their 

phase parameters i.e. a spectral density ( )pρ  of optical vortices. A striking example is a 

fractional-order vortex beam. Its properties are defined by both the value of the 
topological charge p  and type of its complex amplitude (BG, LG, etc). 

In the following sub-sections, we set a task to uncover the basic properties of 
different types of the fractional-order vortex beams and to build up from them the integer-
order vortex beams. 

A. Optical quarks as a fractional optical vortex 

Let us consider, at first, typical vector supermodes in free space or a uniform 
isotropic medium made up of the Bessel-Gaussian beams. We focus our attention on 
monochromatic wave beams with the carrier frequency ω  that enables us to exploit the 

vector Helmholtz equation for the vector potential A  under the condition of Lorentz 
gauge [17]. The electric E  and magnetic H  fields can be defined as 

( )2

1
, ,ik

k

 = + ∇ ∇ ⋅ = ∇×  
E A A H A    (1) 

with the wavenumber k . 

Our interest is the paraxial approximation where 2 2
z k∂ <<A A  so that the 

longitudinal components 
z

E  and 
z

H  can be expressed in terms of the transverse ⊥Ε  and 

⊥H  ones 
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, , .
z z x x y y

i i
E H

k k
⊥ ⊥ ⊥ ⊥ ⊥≈ ∇ ⋅ ≈ ∇ ⋅ ∇ ≡ ∂ + ∂E H e e         (2) 

For the beam propagating along the z − axis of the complex amplitude A  of the 

vector potential ( ), , ik z
x y z e=A A  obeys the paraxial wave equation 

( )2 2 0zik⊥ ⊥∇ + ∂ =A .         (3) 

The choice of the vector A  is defined by a type of the wave beam. If we take, for 
example, the vector A  to be directed along the x − axis (a linearly polarized basis) 

( )expx A ikz⊥=A e  then the solution to the vector wave equation is reduced to the scalar 

equation (3) for the function ( ), ,x y z A⊥Ψ =  with the solution [20] 

( ) ( ), , , ,NF X Y G x y zΨ =     (4) 

where 

( )
2

, , exp /
2

k r
G x y z i Z

Z

 
=  

 
    (5) 

stands for the Gaussian envelope, 0Z z iz= − , 2
0 0 / 2z kw=  is the Rayleigh length with 

the radius of the beam waist 0w , / , /X x Z Y y Z= = , 
2

0 exp
2

K
N w

ikZ

 
= − 

 
, 

2 2 2
r x y= +  and K  is the arbitrary beam parameter that can take on both the real and 

complex values. 

At the same time the function ( ),F X Y  obeys the two dimensional Helmholtz 

equation 

2 2
2

2 2
0.K F

X Y

 ∂ ∂+ + = ∂ ∂ 
    (6) 

In the cylindrical coordinates the solution to the equation (6) can be written as 

( ) ( ){ }
2

0

, exp cos ,
p

F R i p KR d

π

ϕ ϕ ϕ ϕ ϕ′ ′ ′= − −        (7) 

Here the parameter ( ),p ∈ −∞ ∞  is arbitrary real value, 2 2 2R X Y= + . The real part 

of the parameter K  is connected with the half angle θ  of the plane wave’s cone of the 
Bessel beam. 
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Such a representation of the beam charge ( ),p ∈ −∞ ∞  enables us to expand any 

regular complex beam into the series over different fractional-charged optical vortices just 
as it can be presented in the form of the series over different integer-order charged optical 
ones. 

To obtain the explicit form of the function 
p

F  in (7) let us use the Fourier 

transformation 

( )sin
.

i p im
ip

m

e p e
e

p m

π φ
φ π

π

∞

=−∞

=
−     (8) 

The parameter p  here can be regarded as a fractional topological charge, that is 

responsible for the array of the integer-order vortices with topological charges 

... 1,0,1,..m = −∞ − + ∞  with the spectral vortex density ( ) ( ) 1
p p mρ −= − . When 

p m=  all terms of the series vanish except the term 
im

e
φ

. In a general case the function 

( )pρ  can be defined by a preassigned way as, for example, in the paper [15] for 

Laguerre-Gaussian beams, but for our purposes we restrict its dependence to the simplest 

case of ( ) ( ) 1
p p mρ −= − . 

On the other hand the definition of the Bessel function is 

( ) [ ]{ }
2

0

2 exp cosm

mi J KR i m K d

π

π φ φ φ= +     (9) 

with φ ϕ ϕ′= − . As a result, we find 

( ) ( ) ( ) ( ), , , 2 , sin
m im

i p

m

m

i e
p r z p NG r z p e J KR

p m

ϕ
πϕ π

∞

=−∞

= Ψ =
− ,     (10) 

Thus, the fractional topological charge p  can serve as a global parameter of the 

complex optical beam. The obtained equation implies two possible propagation processes 
depending on the value of the K − parameter. The real K − parameter is associated with 
the phase front wreathed by a net of integer-charged vortices at the initial 0z =  plane. 

For example, when propagating, the vortices with 1/ 2p =  begin to form a group in such 

a way that the vortex net vanishes. There appears the smooth wave front looking like the 
helix with the phase shift π∆Φ =  and the C-shaped intensity distribution. For the 

imaginary value of the K − parameter, the process evolves in the opposite direction [17]. 
Consider such a process in details. 

B. Half integer-order vortices beams 

The fractional-order vortex beams permit us to construct unusual wave structures 
with the broken axial symmetry. In contrast to the usual axial symmetric TE and TM 
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modes with a local linear polarization in each point of the beam, the broken symmetry of 
the TE and TM mode beams with a fractional order 1/ 2p = ±  vortices in each polarized 

component contains local elliptic polarizations at different points of the beam cross-

section under the conditions 0
z

E =  for TE  and 0
z

H =  for TM  beams along the beam 

length. The broken symmetry of the vector field dictates the choice of the basis in the 
form of circularly polarized components. 

From the equations (2) we obtain for the TE mode ( 0, 0
z z

E A= = ) 

x x y y
E E∂ = −∂  or 

x x y y
A A∂ = −∂    (11) 

and 

x x y y
H H∂ = −∂  or 

x y y x
A A∂ = −∂    (12) 

for the TM  mode ( )0, 0
z z

H A= = . 

It is convenient to employ the circularly polarized basis 

,
x y x y

A A iA A A iA+ −= − = +     (13) 

and a beam vortex structure needs new complex coordinates 

,i i
u x iy r e v x iy r e

ϕ ϕ−= + = = − =         (14) 

so that 

,
2

.
2

i

u x y r

i

v x y r

e i
i

r

e i
i

r

ϕ

ϕ

ϕ

ϕ

−
 ∂ = ∂ − ∂ = ∂ − ∂ 
 

 ∂ = ∂ + ∂ = ∂ + ∂ 
 

     (15) 

Then we find for TE  modes ,
u p v p

A A+ −= ∂ Ψ = −∂ Ψ  or 

,
2

,
2

u p p

v p p

v
E N F i k F G

Z

u
E N F i k F G

Z

+

−

 = ∂ +  

 = − ∂ +  

    (16) 

where the function 
p

F  obeys eq.(7). 

In optical paraxial cases, where ,u v p p
F k F∂ << , we can use the approximation 

, .
2 2

p p

v u
E iN k F G E iN k F G

Z Z
+ +≈ ≈ −            (17) 
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Similarly we obtain TM  mode beams 

, .
2 2

p p

v u
E iN k F G E iN k F G

Z Z
+ +≈ ≈                  (18) 

Half-order ( )2 1 / 2n + − vortex-beams occupy a special place among variety of the 

fractional-charged optical fields because they can be easily and reliably generated at the 
initial plane by q-plates [23], photonic crystals [24] and arrays of microchip lasers [25]. 
Special types of singular beams with the fractional topological charges and fractional 
orbital angular momentum (OAM) in the closed form (e.g, erf-G beams and others) have 
been recently considered in number of papers [17, 18, 21, 26]. 

In this sub-section we will obtain the general closed form of the half-order vortex 
beams. 

As a basic point we take the equation (7) and rewrite it in the form of 

( ) ( )
/22 1

2 1 os 22

/2

, e e .
n

i
i n iKR

p
F R Ke d

π ϕ
ϕ φ φ

ϕ

ϕ φ
−+

+ −

−

=     (19) 

Remember that 

( ) ( )
[ ]

( )
[ ]

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1/2
2 2 2

0

1/2
22

2 1
0 0

22 1
2 1

0

2
2

2 1 2
0 0

cos 2 1 1 sin cos

1 sin sin ,

sin 2 1 1 sin cos

1 cos cos ,

n
j j j n j

n

j

n n j
n j j mj m

n n j

j m

n
j n jj j

n

j

jn
m j n j mj m

n j

j m

n d C

C C d

n d C

C C d

φ φ φ φ

φ φ

φ φ φ φ

φ φ

+
−

=

+ −
− +

+ −
= =

−+
+

=

+ − +
+

= =

+ = − =

= −

+ = − =

= − −



 





 (20) 

m

n
C −  a binomial coefficient. 

For example, 

( ) ( )
( ) ( )

2

2

cos3 1 4sin sin ,

sin 3 4cos 1 cos .

d

d

φ φ φ

φ φ φ

= −

= − −
   (21) 

After substituting (20) into (19) and integrating [22] we obtain 

( )
[ ]

( ) ( ) ( )
1/22 1 2

22
2 1 , 2 1 2 ,

0 0 0 0

1 1 ,
nn n j jn

i n j m js cj m j m

p n n n j m j n j m j

j m j m

F F Ke C C F C C F
ϕ ++ −

+ +
+ − +

= = = =

  = = − + − 
  
   (22) 
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where 

( )

( )

( )

( )

2

, 1/2

2

, 1/2

1
1/ 2, 2 sin

2 2
,

2

1
1/ 2, 2 cos

2 2
,

2

s

j m j m

c

j m j m

j m j m iKR

F
iKR

j m j m iKR

F
iKR

ϕ

ϕ

+ +

+ +

   Γ + + − Γ + + −   
   =

−

   Γ + + − Γ + +   
   = −

  (23) 

( ),n xΓ  stands for the incomplete Gamma function. 

For example, the fractional beam with 3 / 2p =  is described by the expression 

( ) ( ){ }
( ) ( )

( ) ( )

2

2

3

2
3/2 3/2 3/2

sin
2

3/2

cos
2

3/2

,

4 sin 2 sin / ,
2 2

4 cos 2 cos / ,
2 2

2 .

is c

s

c

N G
K F iF e

F e erf

F e erf

iKR

ϕ

ϕ

ϕ

σ
ϕ ϕπ

ϕ ϕπ

−ℜ

−ℜ

Ψ = +

  = − ℜ + ℜ − ℜ ℜ  
  

  = −ℜ − ℜ + −ℜ −ℜ  
  

ℜ =

   (24) 

It is useful to mark that the function 3/2Ψ  in eq. (24) is a periodic one with the period 

2π  despite the factors cos
2

ϕ
 and sin

2

ϕ
 in the functions 

( ),

3/2

c s
F . In order to prove it, it is 

necessary to take into account the factor 
3

2
i

e
ϕ

 in the function 3/2Ψ  and oddness of the 

function ( )erf x . 

The presented above results are of a new family of asymmetric scalar vortex beams 

with ( )2 1 / 2p n= ± +  that we call Gamma-Gaussian beams ( GΓ −  beams) referring to 

the complex amplitude
p

Ψ . The GΓ −  beams are a natural generalization of the 

erf G−  beams [17] over all set of half integer-order vortex topological charges. 

Typical representatives of the GΓ −  family of the singular beams are shown in 
Fig. 1. Thus, the field distributions at the beam cross-section depend essentially on the 
value of the K −  parameter. When the K −  parameter has a pure real value (Fig. 1) the 
intensity distribution has a C −  like profile at 0z =  with the only half-integer order 
vortices near the center (see e.g. [17]). 
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However, when propagating the intensity profile is drastically transformed turning 

into broken Bessel beam at the length 0z z>>  with integer-order vortices scattering over 

the beam cross-section. For the pure imaginary K −  parameter ( K  is constant), the 

process is reversed. 
The phase distributions shown in Fig. 1 (b) illustrate a complex phase structure for 

different half-order vortex topological charges. 
A smooth growth of the phase up to / 2πΦ =  for 1/ 2p =  is replaced by the phase 

oscillations in the broken second branch of the two-leaved helicoid for the topological 
charge 3 / 2p = . The phase loss is / 2π∆Φ = . The same phase construction is observed 

for the topological charge 5 / 2p =  where the third branch of the three-leaved helicoid 

lacks also the phase / 2π∆Φ = . All phase losses are accompanied by smooth variations. 
The sign alternation p p→ −  changes the direction of the helicoid twist. 

All the above equations enable us to build a great number of asymmetric transverse 
electric TE  and transverse magnetic TM beams. Some of them are shown in Fig. 2. 

 

Fig. 1. (a) Intensity distributions of the Gamma-Gaussian (G − Γ ) beams with different 
topological charges p  at the initial plane and at the far diffraction zone 
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Fig. 1. (b). Phase distributions ( ),r ϕΦ  at the initial plane 0z =  

 

Fig. 2. The field distributions of the GΓ −  beams for different topological charges at the 
background of the intensity distributions 
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The fine structure of these fields is reshaped along the beam length, so that the beams 
are structurally unstable under propagation in free space. In contrast to standard TE and 
TM modes the asymmetric paraxial beam fields in Fig. 2 are elliptically polarized at each 
point of the beam cross-section with distinctive orientations of the ellipse axes. Near the 
optical axis, the field tends to form two polarization singularities of a kind (the star or 
lemon [12]). Far from the center, the directions of the linear polarization are wound into 
Archimedean (for TE) and logarithmic (for TM) spirals. 

The peculiar feature of the GΓ −  beams is also their capacity to gather together 
integer-order vortices into one with the fractional topological charge at far diffraction zone 
when the K −  parameter is a pure real value while a pure imaginary value of the K −  
parameter induces the reverse process – the fractional vortex decays into an infinite 
number of integer-order vortices. Such beam behavior reflects the inherent processes in 
the fractional-order vortex structures in contrast to the representation of the inevitable 
vortex decaying. 

In essence, all types of the considered above fractional order beams are the 
structurally unstable under propagation. 

C. Shaping the integer-order vortex beams 

Can the fractional-order vortex beams form a stable state of the singular beam with 
the centered integer-order vortex? This a key question of our consideration here. 

At first, we will analyze a dipole structure consisting of two orthogonal states p  

and p− : 

( )2 2
,

m im

m

m

i m e
p p p p Q J KR

p m

ϕ∞

=−∞

− = + − =
− ,  (25) 

where ( ) ( )2 , sin i p
Q N G r z p e

ππ= . The state (25) we can regard as the initial 

topological dipole. 

After rotating the initial dipole through an angle 
q

q

πϕ = (Fig. 3) so that 

q

πϕ ϕ→ +  we obtain 

( )2 2
, , .

m im i m
q

m

m

i m e
p p q Q J KR e

p m

πϕ∞

=−∞

− =
−         (26) 

Superposition of the equations (25) and (26) gives a new dipole 
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( )2 2

, , , , ,

1
m im i m

q

m

m

p p p p p p q

i m e
Q J KR e

p m

πϕ∞

=−∞

− ± = − + − =

 
= ±  −  


.        (27) 

If 1q =  the terms with 2 1m m′= + for a sign ( )+  vanish while the residual terms 

forming the state  

( ) ( ) ( )
( )

( )222
0

2 sin 2
, 2, 4 1

2

m

m

m

m m
p i Q J KR

p m

ϕ∞

=

+ = −
−

 .       (28) 

In turn, for a sign ( )− , the terms with 2m m′=  vanish and we find the state 

( ) ( ) ( )
( ) ( )2 12 2

0

2 1 sin 2 1
,2, 4 1 .

2 1

m

m

m

m m
p Q J KR

p m

ϕ∞

+
=

+ +      − = − −
− +  

    (29) 

The first state (28) does not contain any optical vortices but only the set of edge 
dislocations of the order 2p =  as well as the equation (29) with 1p = . 

In order to obtain hight-order beams, e.g. with 4p = , we set a phase difference 

between two dipole states (30) equal to 
n

ϕ π∆ = . As a result one obtains 

( ) ( )
( )

( )
2

222

2 (1 )
,4, 1

2

i m im
m

m

m

m e e
p Q J KR

p m

ϕ π∞

=−∞

±
± = −

−
           (30) 

so that the two states are 

( ) ( ) ( )
( )

( )422
0

4 sin 4
, 4, 2 1

4

m

m

m

m m
p i Q J KR

p m

ϕ∞

=

+ = −
−

        (31) 

for the sign ( )+ , and 

( ) ( ) ( )
( )

( )422
0

4 2 sin 4 2
,4, 2 1

4 2

m

m

m

m m
p i Q J KR

p m

ϕ∞

=

+ +
+ = −

− +
 .  (32) 

for the sign ( )−  

By means of such a recurring procedure one finds the general expressions 

( ) ( ) ( )
( )

( )422
0

4 sin 4
, 2 2 1 , 1, 2,...,

4

m

sm

m

s m s m
p s i Q J KR s

p sm

ϕ∞

=

= − =
−

 ,     (33) 
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( ) ( ) ( )
( ) ( ) ( )2 2 1 122

0

sin 2 2 1 1
, 2 1 2 1 2 2 1 1 ,

2 2 1 1

0,1,2....

m

s m

m

s m
p s Q s m J KR

p s m

s

ϕ∞

+ +
=

+ +  + = − − + +  
− + +  

=


(34) 

where s  is a number of the recurring transformations, whereas 2s  and 2 1s +  are 
topological indices of the wave constructions. 

The following step is to rotate the initial dipole through an angle 0
2

πϕ = . Such a 

transformation turns sine in (33) and (34) into cosine at 0m =  at arbitrary index s . As a 
result we obtain the states with the centered optical vortices of the required integer-order 
topological charges 2l s=  or 2 1l s= +  

0 /2
, , ,p l p s i p s π± = ± .     (35) 

Intensity distributions of the axially symmetric fields shown in Fig. 3a, c illustrate the 
optical constructions built up of the broken fractional vortex-beams on the base of the 
expressions (33) and (34). 

 

Fig. 3. Intensity distributions and L-lines of the axially symmetric beams shaped by 
the fractional-order vortex beams 
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Astonishing feature of these structures is that there are no optical vortices in them. 
Instead we see in Fig. 3b, d the curlie-wurlie of the degenerated edge dislocations (L-lines 
[48]) webbing tightly around the beam pattern. Three (Fig. 3 b) and six (Fig. 3 d) nodal 
lines intersect each other at the axis. 

As a result, expressions (35) and (36) are responsible for shaping the optical tracery 
shown in Fig. 4 consisting of the interchangeable arranged vortex arrays and degenerated 
edge dislocations around the centered optical vortex with the topological charges 3l =  

and 6l = . 

 

Fig. 4. Intensity beam distributions with centered higher-order vortices and complex 
vortex framing 

Thus, a simple rotation of two topological dipoles through discrete angles (Fig. 5) 
enables us to form singular beams with the required, centered integer-order optical 
vortices. 

 

Fig. 5. The sketch of the topological dipole and its angular rotation 
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When propagating such a complex beam transforms it’s framing far from the axis 
while the central part preserves the singular structure. 

At the same time, all the beam states (both with the integer-order and fractional-order 
vortices) in free space or uniform isotropic media are degenerated, i.e. have the same 
propagation constants independent on the topological charge values. The choice of the 
beam representation in one or other basis is determined by the intrinsic symmetry of the 
optical system. Despite the fractional vortex beam degeneracy in free space, the results 
presented above enable us to originate new vortex-beam constructions that can open their 
extraordinary properties in non-uniform anisotropic media as we will see it later. 

Also, the problem of the “hidden phase” of the fractional-order vortices [4] in the 
circularly polarized field components slipped out from our consideration since the 
fractional-order vortex, as a rule, decays into an infinite number of the integer-order 
vortices under propagation. 

However, the exclusion is the GΓ −  beams that can either break down the fractional 
vortex into a set of integer-order vortices or, vice-versa, gather them together into one 
fractional vortex at far diffraction zone. The control for these counter-directed processes 
brings into effect the modulation of the beam parameter K . 

Further we consider two examples of the possible manifestations of the fractional-
order vortex beams in the uniform and non-uniform anisotropic media with the distinctive 
intrinsic symmetry. 

2. DECAY OF OPTICAL QUARKS IN UNIAXIAL IN BIAXIAL CRYSTALS 

A. General remarks 

The fractional-charged beams propagating in uniaxial crystals has been partially 

regarded in [26] for the vortex beams in states 1/ 2±  (the so-called erf-G beams). 

Authors showed conversion between the states 1/ 2 1/ 2 2± ±  in circular polarized 

components. It is easily to generalize this rule to arbitrary states 2 .p p ±  However 

all the states with different fractional-order vortices are degenerated. 
Alternatively, biaxial crystals have one interesting type of the dielectric tensor 

singularity – Hamilton’s diabolical point [28] that defines particular behavior of the vortex 
beams propagating along one of the crystal optical axes – so called the conical refraction 
predicted by Hamilton due to a peculiar space-variant birefringence (see Fig. 6). 

The internal conical refraction is in spreading a narrow light beam propagating along 
the crystal optical axis into a hollow cone [29]. The initial circular polarization of the 
beam splits into a cone of local linear polarizations in such a way that the electric vector 
E  rotates though an angle π  after a full path tracing around the cone axis as shown in 
Fig. 6. Generalization of Hamilton`s approach onto Gaussian beams introduces corrections 
into a fine structure of the field propagation and distribution [28]. The phenomenon is 
called the conical diffraction. The conical form of the beam suggested the solutions of the 
problem in the form of Bessel beams. At the same time, the polarization distribution in 
Fig.6 has also much in common with that of erf G−  and GΓ −  beams in Fig. 4 [17]. 
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Little misalignments of the field patterns far from the optical axis can be referred to a 
complex structure of the fractional-charged vortex beams. 

 

Fig. 6. (a) The shaping of a diabolic point (DP) in a biaxial crystal as intersection of two 
wave surfaces. The callout illustrates places of the ray and wave cones of the conical 
refraction; (b) Space-variant directions of the biaxial crystal birefringence under the 

conditions of the conical refraction on the background of the beam intensity 

The unexpected results presented in the papers [29, 30, 31, 32] have shown that the 
uniaxial crystal exhibits a tendency to turn into a biaxial one after twisting it around the 
optical axis. The space-variant symmetric field of TE or TM eigen modes inherent to a 
uniaxial crystal [33] at the initial plane 0z =  transforms into the asymmetric field 
distribution similar to that shown in Fig. 6. In contrast to the standard conical diffraction 
in the typical biaxial crystals, the intensity distribution in the twisted uniaxial crystal has 
not the pronounced C-shaped form or the circular form with Poggendorff rings [29] but 
the pattern gets smeared over the cross-section with the singular point at the axis. 
Nevertheless, the fine structure of the pattern can be controlled by means of either 
mechanical or electrical devices. 
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The presented results point out on the fact that eigen mode beams of the conical 
diffraction and adjoining phenomena are worth searching among the fractional-order 
vortex-beams. 

Thus, the aim of the following sub-section is to study the propagation and conversion 
of the fractional-order vortex-beams of the Bessel type along one of the optical axes of the 
biaxial crystal. We will focus our attention to the question: could the input beam field with 
a space variant polarization identical to that of the crystal birefringence (say,  

the state p ) propagate without structural perturbation (to be the propagation-invariant 

wave constructions)? If yes, then we can expect the fractional-order mode beam to be an 
eigen mode of the medium. 

B. The theoretical treatment 

The underlying idea of our treatment leans on the constitutive papers [34−37] where 
authors consider evolution of the electric field E  (rather than the electric displacement 
D ) of Bessel beams in biaxial crystals under the condition of conical diffraction. The fact 
is that the wave normal is not directed along the beam propagation in a biaxial crystal so 
that there appear additional terms in the vector wave equation because of changes in the 
permittivity tensor. In our case we can use this tensor in the form [37] 

13

2

13

0

ˆ 0 0 ,

0

a

b

ε ε
ε ε

ε ε

− 
 =  
 − 

      (36) 

where ( )( )1 3 1 3 2 1 3 2 13 1 3 2 1 3 2 2/ , / , /a bε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε= + − = = − − , 

2 2 2
1 1 2 2 3 3, ,n n nε ε ε= = =  are the principal refractive indices of the crystal along the axes 

, ,x y z′ ′ ′ . 

The optical axis directed at the angle θ  to the axis z′  

( )
( )

3 2 1
1 2 3

1 3 2

tan .
ε ε ε

θ ε ε ε
ε ε ε

−
= < <

−
 

passes through a diabolic point where slow (s) and fast (f) wave fronts are tangent to each 
other as shown in Fig. 7. 

Author of the papers [35, 38] showed that the circularly polarized beam components 

with the spectral function at the crystal input ( )A k⊥  ( k⊥  is the transverse wavenumber of 

the initial beam), are 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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 
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 

 

 
(37) 

 

Fig. 7. Sketch of the surface of normals of the slow (s) and fast wavefronts and the optical 
axis direction 

It means that the right-hand circularly polarized beam bearing a series of the vortex-

beams of the m-order and a complex angular spectral distribution ( )A k⊥  at the crystal 

input stimulates an excitation of a series of the vortex-beams of the m+1 – order with the 

same angular spectrum ( )A k⊥  in the left-hand circularly polarized component. 

Similarly, it can be shown that the composition of the vortex beams of the m+1 – 

order with the spectral distribution ( )A k⊥  in the left circularly polarized component at 

the crystal input excites a series of a series of the vortex-beams of the m – order with the 

same angular spectrum ( )A k⊥  in the right-hand circularly polarized component, i.e. 
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 (38) 
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The circularly polarized single Bessel beam ( ) ( )exp zi k zin

m
E J k r im eϕ+ ⊥=  with 

integer-order topological charge m , directed along the crystal optical axis (axis z  in 

Fig. 7), has the conical spectral distribution ( )( )0
A k k const⊥ ⊥= = . In order to obtain the 

beam propagation of such a beam it is sufficient to multiply eq. (37) by the factor 
( )( )0

k kδ ⊥ ⊥− , and taking into account m m′ →  we find 

( ) ( ) ( )
( ) ( ) ( )

2
0

1
1 0

exp cos
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exp 1 sin 2

m i z

m b

J k r im k zE k
i z e

J k r i m k zE k

βϕ γ
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⊥ ⊥+ ⊥

+ ⊥ ⊥−

    
= = −      − +      

E ,(39) 

where ( )2 2 2 0 13, / 2 1 / , / 2 .
b b b

n z k k nβ ε ε γ ε ε= = + =  

Similar to that we can obtain from eq. (38) for the initial field in the form 

( ) ( )1 exp 1 zi k zin

m
E J k r i m eϕ− + ⊥= − +    the expression 
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Combination 1 2i±E E  of (39) and (40) gives 
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and 
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The equations (41) and (42) show that such fields with space-variant polarization can 
propagates through the crystal without any structural transformations but with different 

propagation constants 

2

02 b

k
k

k
β γ β⊥

± ⊥= ± + . 

Difference between the propagation constants β±  of the mode beams is connected 

with rotation of the mode fields 1E  and 2E  through an angle π . Fig. 6 demonstrates the 

situation when the local directions of the space-variant birefringence ( )n ϕ∆  of the 

crystal coincides with the local directions of the local field distribution that corresponds 
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the propagation constant β+ . The field rotation at the angle 0ϕ π=  results in changing 

the sign of the local birefringence ( ) ( )n nϕ ϕ∆ → −∆  that corresponds to replacement 

β β+ −→ . 

The polarization state distribution of the s at the mode beam cross-section (6) has a 
complex form in contrast to the standard structure shown in Fig. 6. A typical space-variant 
polarization illustrates Fig. 8 for the mode index 6m = . 

 

Fig. 8. The polarization state distribution of the mode beam with the index 6m =  (a) and 

(b) the dependence of the ellipticity degree ( )3S r  along the beam radius 

Directions of the polarization ellipse axes ψ  are depicted on the background of the 

mode intensity distribution. The ellipticity states specified by the Stokes parameter 3S  as 

a function of radial position in Fig. 8 b oscillate from the right-hand 3 1S =  to left-hand 

3 1S = −  states. However, the ellipticity 3S  preserves its value along the azimuth direction 

φ̂ . Although the path-thracing around the beam axis through an angle ϕ π=  is 

accompanied by the ellipse rotation through an angle / 2ψ π= , the full path-tracing 

results in reinstating both the polarization state and beam phase. Such a space-variant 
polarization of the eigen mode manifest itself in the ring pattern of intensity distribution 
while the linear space-variant polarization is in line with C-shaped distribution in Fig. 6. 

The partial solutions (41) and (42) in the form of eigen modes can be extended to a 
general solution as a superposition of (41) or (42) with different values of indices m . In 

particular, the mode field 
( )
p

+
E  with the propagation constant β+  and the fractional 

topological charge p  in the right-hand component can be presented as 
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where sin ip

p
c p e

ππ= . Similar to that we can write down the mode field 
( )
p

−
E  with the 

propagation constant β− : 
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with 
2

2
in

b

k
k

k
β γ β⊥

± ⊥= ± −  and we employ the expression (44). 

Typical field distributions on the background of the beam intensity is shown in Fig. 9 

for the 0.5  and 7.5  fractional states. 

We calculated the states for the potassium gadolinium tungstate KGd[WO4]2 (KGW) 

biaxial crystal with refractive indices 1 2 32.013, 2,045, 2.086,n n n= = =  for the 

wavelength 0.63 mλ µ= , so that the crystal and beam control parameters are 

0.0087
in

radγ ≈ , 4,224
b

ε ≈ , 5 11.74 10k m
−

⊥ ≈ ⋅ . We found the beams in all beam 

states to have a linear polarization at the cross-section. In contrast to the integer-order 
vortex charges (see Fig. 8), an angle rotation of the liner polarization ψ  of the fractional-

order states is multiple to π  after a full path-tracing around the axis and depends on both 
the topological charge p  and a transverse position r . Besides, we found that the greater 

the value of the parameter k⊥  the greater the number of polarization variations along the 

radial r̂  directions. 
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Fig. 9. Field distributions of the fractional-order vortex beam in the potassium gadolinium 
tungstate KGW biaxial crystal 

The beat length in our case equals to ( )2 / 4.15
B in

L k mmπ γ ⊥= ≈ . It means that the 

states p  and 1p +  appear alternately at this length while the eigen mode states (43) 

and (44) in Fig. 9 emerge at the lengths ( ) ( ), 2 1 / 4 , 0,1,2,....
e o in

L n k nπ γ ⊥= + =   

Thus, the right-hand circularly polarized Bessel beam with the p −  fractional-order 

vortex at the crystal input induces the beam with 1p + −  fractional-order vortex at the 

left-hand circular polarization at some crystal length z . At the beam length 

( )2 1 , 0,1, 2,...
2

z n n
k

π
γ ⊥

= + =  all energy state is transported from p  into 1p +  

state. However the eigen modes 
( )
p

±
E  for different charges p  have the same propagation 

constants (i.e. are degenerated). Any superposition of the fractional-order vortex beams 
obeys the same transformations (45) as the single field states. 
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Thus, the energy transport of the conical diffraction process in biaxial crystals is 

carried out from E+  component in p  state into E−  component in 1p +  state and 

vice-versa for wide types of the field structure of fractional-order vortex beams. However, 
difference of the propagation constants between the orthogonal field components is the 
same for all types of the fractional-order vortex-beams. There is not an appropriate 
physical mechanism in the biaxial crystals that could make the polarization structure of 
the beam to follow the singular structure with the fractional-order index of the 
birefringence directions. As a result the biaxial crystals cannot maintain the single 
fractional-order vortex beams without their decay into a set of the integer-order vortices. 

Let us now peer more attentively into shaping the beam structure in space-variant 
birefringent media. 

CONCLUSION 

Different types of symmetry of optical media are the key points that specify 
properties of the singular beam propagation. It is such starting points that were the base of 
our consideration. At first, we have considered variety of vector fractional-order vortex 
beams that can be transmitted through free space or a uniform isotropic medium. Among 
them the Gamma-Gaussian beams (the GΓ −  beams, in particular, the erf-G beams) 
occupy a special place. The fact is that in contrast to the prevalent opinion about decaying 
the initial fractional-order vortex into a cloud of integer-order vortices, the GΓ −  beams 
either break apart of the fractional vortex or, vice-versa, gather together integer-order 
vortices into one fractional-order vortex at far diffractive zone. However, all types of such 
vortex beams are unstable under propagation. 

On the other hand, we revealed that singular beams with the stable centered integer-
order vortices can be formed by four fractional-order vortices. Such constructions remains 
stable for different values of the topological charges p . 

We found that the space-variant birefringence with one singular point shown in Fig.6 
is inherent in the fractional-order vortex-beams at the crystals input under the condition of 
the conical diffraction. Typical scenario of the beam propagation here evolves in such a 
way that the topological charges of the fractional-order vortices in the circularly polarized 
components of vector beams differ from each other in one unit. The difference between 
the propagation constants of the components is independent on the value p . It means that 

the biaxial crystal does not feel distinction between the fractional- and integer-order 
vortex beams. The same processes we observe also in the so-called q-plates, Moreover the 
polarization states at the beam cross-section are distributed by the complex way far from 
that of the birefringent directions in the crystal. Naturally the fractional-order vortex 
beams in the biaxial crystals and q-plates are also unstable one under propagation. 
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ДРОБНЫЕ ОПТИЧЕСКИЕ ВИХРИ: УСТОЙЧИВОСТЬ И 

ПРЕОБРАЗОВАНИЕ 

Воляр А. В., Алексеев К. Н., Егоров Ю. А., Акимова Я. Е.* 

Физико-технический институт, Крымский федеральный университет имени 

В. И. Вернадского, Симферополь 295007, Россия 
*E-mail: yana_akimova_1994@mail.ru 

В данной работе мы изучили формирование и эволюцию сингулярных пучков, 
переносящих оптические вихри с дробным топологическим зарядом как в 
однородной, так и неоднородной анизотропной среде. Вихри дробного порядка 
могут быть представлены как суперпозиция бесконечного числа вихрей 
целочисленного порядка с определенным распределением энергии (вихревые 



FRACTIONAL OPTICAL VORTICES: STABILITY DECAY … 

43 

спектры). В работе показано, что гладкий волновой фронт вихря с дробным 
топологическим зарядом может распадаться на асимметричный массив целых 
вихрей, либо наоборот, массив оптических вихрей может образовывать гладкий 
геликоидальный волновой фронт. Показано, что наложением конечного числа 
вихревых пучков дробного порядка можно сформировать пучки с произвольными 
значениями топологических зарядов. Мы продемонстрировали, что в двухосных 
кристаллах при условии конической дифракции дробные вихри не устойчивы, а 
также, что кольцевые массивы волокон с пространственной вариацией 
двулучеприломления являются подходящей средой для вихревых пучков дробного 
порядка. 
Ключевые слова: оптически вихри, дробный топологический заряд, супермоды 
дробного порядка, скрытая фаза, массив оптических вихрей. 
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