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In this paper we demonstrated that in biaxial crystals under the condition of the conical diffraction the
fractional-order vortices are unstable. We also demonstrated that the circular fiber array with a space-variant
birefringence is an appropriate medium for fractional-order vortex beams in such arrays the supermodes may
bear the half-integer order vortices in circular components. The decisive role in forming such supermodes
plays evanescent-coupling assisted phase locking of individual fiber modes combined with tunneling of
polarization states between anisotropic fibers in the array. We showed that integer-charge phase increment in a
fractional-order supermode consists of two half-integer charge phase contributions. The implicit half-integer
charge phase contribution (or the “hidden phase”) comes due to the sign alteration of the amplitude factors in
the field components that corresponds to the wavefront cuts. We have also made the comparison of the hidden
and hydrodynamic phases in superfluidic fractional-charge vortices with analogous phases in fractional-order
supermodes.

Keywords: optical vortices, fractional topological charges, the fractional-order supermodes, hidden phase, the
array of optical vortices.
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INTRODUCTION

In this paper we studied the shaping and evolution of singular beams bearing optical
vortices with fractional topological charges both in uniform and non-uniform anisotropic
media. Authors of the paper [3] remarked also unusual behavior of the orbital angular

momentum /. (OAM). At first glance it seems that the fractional-order vortex topological

charge is an indicator of the OAM of singular beams at least records nearest values to its
physical quantity. In some first papers ([7], [13]) authors obtained a nearly linear

dependence between L and a topological charge p on the base of assessed theoretical
results. However, the computer simulation of the process and physical analysis [12]
revealed a complex behavior of the function 7 (p). Small values of the charge p <10
correspond to a nearly linear dependence /. p with a small amplitude of oscillations.
The growth of the value p >10 results in increasing the amplitude of oscillations between
the values [ =int eger( p) and p =0. The presented results are evidence of a complex

interference coupling between a great number of the integer-order vortices in a fractional-
order vortex beam.

One more unexpected property of the fractional-order vortex beams revealed the
authors of the paper [15]. They tried to answer experimentally the question: can the
fractional-order vortex beams control the states of the integer-order ones? They achieved a
success using two beams: the pump and probe ones.
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The pump beam is of a topological dipole field consisting of two Y2- order vortices
with opposite signs of their charges. The pump beam lays a course in a nonlinear medium
for the probe singular beam of a smaller intensity. Changing parameters of the dipole they
can steer the state of the probe beam. In fact, the fractional-order topological dipole is not
destroyed inside the nonlinear medium forming the waveguide channel for the probe
beam.

The example of structural stability of fractional-order vortex beams is a discrete fiber
array with supermodes bearing half integer-order vortices [14].

1. THE SPACE VARIANT UNBOUNDED BIREFRINGENT MEDIUM

The brightest representatives of the space-variant media are the so-called g-plates [1].
The g-plate is, in the first version, a slab of a birefringent medium (liquid crystal) with
different local directions of the crystal birefringence while the slab has uniform phase
retardation. The space-variant birefringence of the g-plates is defined by the topological
charge q equal to a rotation of the optical axis in a path circling around the plate center.
Obviously, the value of q can be integer or half inter. The q— value can be controlled
either by mechanical or by the electrical way ([2, 3]) that implements a polarization
modulation at the input beam cross-section. The beam turns into a new wave state due to a
superposition of a great number of plane waves with different polarization states. As a
result the field distribution has a set of elliptic polarization states differ essentially from
the birefringent structure of the g-plate.

There is not an appropriate physical mechanism in the device that could promote
imprinting the space-variant birefringence structure into the propagating field. In that
respect, the processes of the conical diffraction in the uniform biaxial crystal are not to
differ from the effect of the g-plate. In essence, the main mechanism to construct the
structured field in the g-plates are the superposition of the uniform propagating waves
with the space-variant polarization far from that imprinted by the birefringent distribution
of the anisotropic medium while the obtained wave construction maintains the desired
fractional angular momentum. It means that the g-plate is solely destined for controlling
the orbital angular momentum rather than for creating a stable fractional-order vortex-
state.

At first sight it seems that the only physical mechanism of shaping the beams with
the space-variant polarization in unbounded media is a superposition of the uniform
propagating waves but for one little detail. The Fourier analysis is an appropriate approach
only for unbounded media. However, such approach in the paraxial case cannot be applied
to the wave beams in restricted media with a boundary surfaces where along with
propagating waves exist non-radiative (evanescent [14]) waves.

One of such media is photonic crystal fibers that consist of a tightly compressed array
of structured optical fibers. Their total birefringence is specified by the structure of a fiber
stacking and local properties of single fibers [4—6]. The photonic crystals have two
indefeasible advantages: the wave guiding property and the controlled fiber coupling. The
simplest model of the photonic crystal is a discrete circular fiber array [7].

In the following section we will try to uncover basic physical processes responsible
for the structural stability of vortex constructions with half integer-order topological
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charges in non-uniform media with a discrete space-variant birefringence and the rules to
form them integer-order vortex beams.

2. THE DISCRETE FIBER ARRAY: NON-ADIABATIC FOLLOWING AND
OPTICAL QUARKS

A. Supermodes of anisotropic arrays
We will focus our attention on the discrete system of single mode birefringent fibers

inserted into a transparent continuous medium with a uniform refractive index n, lesser

than that of the fiber core n_ <n  ([7-9]). Each optical fiber is located at the vertices of a

regular N-gon as shown in Fig. 1. We will assume that the principal birefringence
refractive indices n, and »n, are such that n =n =n , On=n,-n, <<l and

AMn=n,—n <<on .

Fig. 1. Sketch of the birefringent fiber positions in the discrete circular fiber array

The principal point of our consideration is a distinctive distribution of the axes
birefringence over the optical fibers: the birefringent directions at the ;- th fiber makes

an angle y; with the X axis of the global frame

21Tp j . T
yjp = ]vpj :2¢p.]’ ¢p :Wp’ (1)

where j=0,1,2,..N-1 and p is a number of rotations of the fiber birefringence axis,

i.e. the index p controls the position of the director of the anisotropic medium. The index

p= (2np +1) 12, n =0,1,2,.. sets the characteristic index of the fiber array. The angle
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¢, points out the position of the local fiber in the array. Besides our consideration is
restricted to the case of even N .

The fibers in the array are coupled due to a mutual penetration of the guided fields
inside neighboring fibers. The coupling coefficient a (with the dimension m~ ) is

general for all array and depends on the radius of the core. As a result, the coupled fiber
modes form stable phase-locked field combinations (so-called super-modes) propagating
with certain propagation constants. The field structure and the spectrum of their
propagation constants are determined by the perturbation matrix [7]:

0O 1 0 .. 0 -1

1 01 0 .. 0
5 2¢010 0 @
=acos
i 0 1 01’
0O .. 001 0 1
-1 0 .. 01 0

built through averaging over X',Y' - polarized fundamental modes located at individual

fibers. The mode spectrum P is found from the eigenvalue equation
PK, =PK, 3)

For the components K’ of the eigenvector K one has the following solution

J

Kv] = \/N exp(ij¢2m+l)’ (4)

The composite index v in (4) consists of two elements v =(&,m) so that its first

element assumes two values: £ =1, m=0,1, .. N/2 -1 and the eigenvalue read as

P, =¢gacos2@, cosg,, ., . 5)
The expression for supermodes are built on the basis of the components K’ and are
given by
N-1 ) N-1 )
X, = Z; K/Gi , Y, = Z; K/Gj, . (6)
Jj=C j=C

where i', j. are the unit vectors directed along X',Y" axes associated with the ;- fiber.

For the radial function we chose the Gaussian approximation [1]
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r
szE(e)(p(—z:V2 , (7)

where E is the field amplitude, w is the waist radius equal w=p, /\2InV, p, is the

radius of the fiber core, V = kp,v20n, k is the wavenumber in free space.

The supermodes (51) are formed of fundamental modes of local fibers polarized
along X',Y' local axes. The propagation constant B of the X ,Y, supermodes is
given by [2]

P

B =B+ > % + kin, (8)

where ,E stands for the scalar propagation constant of each local fiber. The signs (i)

denote the upper indices in 8", correspondingly.

Further we will analyze the supermode structure (6) in the circularly polarized basis.
Thus, in the general case the mode field of each local mode is elliptically polarized so that
the contributions to the j-th local fiber make the right-hand circular polarization in the

form of the phase factor exp[i 2mj (m -n, ) /N ] and the left-hand one in the form of

the exp[i 2mj (m +tn, +1) /N } factor. When we consider the array as a whole, the j

index changes from O to N —1 so that the total increments of the phases over the vertices
of the array are 27T(m—np) and 27T(m+np +1). As we have in detail shown in [8]

these increments from opposite circular polarizations set the integer-order vortex charge
of the discrete fiber array. At first sight it seems that we can conclude that such fiber array
cannot support the propagation of vortex modes with the fractional-order topological
charges. However, we have showed in the first sub-section that fractional-order vortices
can be formed by the superposition of the integer-order vortex modes. It proves also
possible to form of the supermodes (4) the simple combinations that explicitly contain the
circularly polarized components bearing the fractional-order vortex fields.

The basic point of our consideration lies in choosing the eigen modes bearing the
fractional-order vortices. We can reach the desired results through combining the

degenerated modes of the fiber array. In fact, the eigenvalues of the matrix P in (2) are

. =K it follows

—&,N/2-m-1

double-degenerate because P =P (see eq. (5)) Since K’

-&,N=2-m-1 £
that K belongs to the same eigenvalues as K . Further we have (K D() =0, i.e. the
vectors are linearly independent. Thus, we choose new set of eigenvectors in the form

= KV _KV —_ KV +KV

e, =——*, e =
1 ’ -1
2

2i ®
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The new set of the eigenvectors can be conventionally divided into two parts with
£ =1 for the e eigenvectors and £ =-1 for e, ones. In accordance with eq. (2) we can

obtain the alternative representation of the eigenvector components

j:L Sin(j¢2m+l)’£:1
= T e 00

while the spectrum of the propagation constants remains defined by eq. (5) and the
eigenvectors are recovered by replacement K’ - I’ in eq. (6). On the one hand, the

function '’ is responsible for a number of zeros in eigen modes of the circular fiber

array, but, on the other hand, the function I'’ lodges the field zeros synchronously with
the birefringence directions on the concrete local fibers in the array. We will call the fields
with £ =1 and £=-1 theodd E , andtheeven E  mode beams, respectively.

For example, at £=1 for the amplitudes at the j—rh fiber for circular components

of the X supermode we obtain exp(—2i¢p j) sin (¢2"+] j) in the right circular polarization
and exp(2i¢p j)sin(¢2nﬂ j) in the left hand component. For the case £=-1, the sines

should be replaced multiplied by cosines multiple by the factor £’ . In this case, the total
phase increments in the components over the vertices of the array are  277p . In fact, the

birefringence symmetry itself of the fiber array inserts the fractional-order topological
charges p into supermode fields.

Following [3] we can write for the electric field components E* of the eigen
supermodes:
. < Iy,
E? (r,¢,z) = G\/NZ [/ exp —gcos(¢—2¢j) 2ipp, —if,z |, (11)
j=0 w
where G = Eexp[—(r2 +r ) / (sz)], r, is the array radius.

Typical field patterns on the background of the intensity distributions of the
supermodes are shown in Fig. 2.

The pattern in Eq. 11, a has the C-shaped form where the electric field directed along
the X' direction of the birefringence axis in each local fiber (see also Fig. 1)

(|1/2) =E,). In the pattern in Fig. 2 b, the intensity distribution is the mirror-reflected

intensity in Fig. 2 a.
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Fig. 2. The polarization and polarization distributions for the supermodes with p = +3/2

However, the electric fields in each local fiber are directed along the Y' axis
(|—1/2> =E , ) under the condition that the fiber array index p remains the same (the
local birefringent directions do not change). In accordance with the eq. (8) the propagation
constants differ from each other by the value AB =g -pB  =2klAn . The patterns in
Fig. 2 ¢ and d have the mirror-reflected positions of the field zeros (m = 1) but the fields
in each local fiber are directed along the X' (|3/2> = E: ) and Y’

(|—3/2> = E,, ) axes, correspondingly. The difference between the propagation constants

is AB=pB,-pB.,, =2kbn .
Curiously, the point x =y =0 around which the full path-tracing is accorded by the
rotation of the liner polarization by ¢ = 77 is not the singular point in a sense. The fact is

that although the field has a space-variant linear polarization over all cross-section, the
central point x =y =0 cannot be related to any well-known polarization singularities.
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Typical polarization singularities (star, lemon or monstar) imply the presence of the
circular polarization at the center [9].

It is important to note that the local liner polarization in each eigen supermode of the
fiber array follows the birefringence axes in the local fibers. Such optical phenomenon has
much in common with the phenomenon of the adiabatic following in a twisted birefringent
medium (in particular, in liquid crystals) [11]. In contrast to this classical effect, the
matching of the field polarization and the fiber birefringence in the discrete fiber array is
realized by jumps from one fiber to the other due to the mode coupling from the direction
of neighboring fibers. In keeping with the adiabatic following phenomenon in the
continuous anisotropic media we call the above effect the non-adiabatic following that
underlies shaping all eigen supermodes in the discrete circular fiber array.

B. Is the “hidden phase’ hidden indeed?

The following point of our treatment is to study the phase composition in the
fractional-order vortex mode components. We plotted the phase patterns using the
expressions (11) for the components of the vortex-beams shown in Fig. 3.

Fig. 3. The ladder-like phase patterns of the supermodes with p =+1/2

One observes the ladder-like structure of the phase for the topological charges
p ==*1 for the even and odd field components where the phase jump A® =77 is present

at the center. However, in accordance with our notion in sub-section the fractional-order
vortex beam is an infinite sum of the integer-order vortex beams. It is the set of integer-
order vortices that makes up the phase deficiency A® = 7. But we do not observe any
traces of the integer-order vortices in Fig. 3.

Perhaps the presented plotting does not feel the hidden vortices? To answer this
question and analyze the fine phase structure we studied the interference of the fractional
beam with the plane and spherical waves. The interference patterns in Fig. 4 are formed

30



SIMPLE PHOTONICS CRYSTALS AS A MEDIUM FOR EXISTENCE OF OPTICAL...

by the superposition of the odd E’, component with the topological charge p=1/2 and

the plane (a) and spherical (b) waves.

a b

Fig. 4. The interferential patterns of the E' ~component with p =1/2

We observe again the ladder-like structure in the phase construction. There is only
one broken fork at the end of the cut of the interference fringes (Fig. 4 a) and the cut of the
interference spiral (Fig. 4 b) attesting to the phase jump 77 in the phase structure that

resembles the Y2-charged vortex imprinted in the field component. There are no any
integer-order vortices in the patterns. Besides, such phase distribution preserves its
structure when propagating along the fiber array in contrast to the fractional order vortex
in free space that is ruined to an infinite number of integer-order vortices [12].

On the other hand, the overall phase increment of 277, as should have been for a
physical meaningful field, is composed of a continuous phase increment of 7 value

which we attribute to a ¥2 - vortex charge and of a phase 77— jump at the cut of the wave

front that preserves during the mode propagation in the wave guided medium. But such a
treatment is only a simple explanation of the interference pattern without a successive
physical mechanism that we will consider later on.

At first, let us show that the fractional-order vortex field component has no phase
singularities. For this purpose, one can study the scalar optical current defined for a scalar
field W [13]

J=i(WO,W -wow). (12)

Taking into account eq. (11) and (12), one can obtain the expression for the
transverse components of the optical current [13]

J,=J, 0 g exp[erO cos(¢—¢m+n)cos(¢m_n)/wzjsin(2p¢m_n)sin @, sing,

n,m=0

(13)
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The summed expression in (13) is antisymmetric in m and » indices that gives
J.=J,, i.e. the optical current does not contain vorticities. However, around the phase

singularities the optical current should forms the closed trajectories [10]. Therefore, the
circularly polarized component of the fractional-order vortex field (11) does not contain
phase singularities.

C. Non-adiabatic following and optical quarks

The essential distinction between the continuous and discreet cases is that the smooth
field distributions inside the optical fibers are broken by the gaps with other refractive
indices and other field nature. In the continuous medium the only propagation wave
participates in the transmitting process, at that the beam field of a unified infinite number
of integer-order vortices at the initial plane scatters into an infinite number of self-
dependent vortices. However, two waves — propagating and evanescent (arising at the
refractive index gaps) influence the shaping supermodes of the discreet fiber array.
Infinite number of the integer-order vortices in the supermode propagates as a single
whole as if the vortices are glued together by the evanescent waves (the fiber coupling)
along all length of the fiber array.

A part of the gluing between the fiber fields in the array plays evanescent waves [14]
(a fiber coupling). It is the evanescent waves that are responsible for the non-adiabatic
following effect shaping the extraordinary field structure different from that in other
propagating fields in continuous media (e.g. in the conical diffraction processes in biaxial
crystals and g-plates). The influence of the evanescent waves on the mode shaping falls
into place if one imagines that the evanescent waves vanish in a blink. But then the wave
guiding effect vanishes too and the supermode turns into an array of divergent light beams
with a space-variant polarization so that we return to the q-plate case.

If we traverse around the array center at the radius r (Fig. 2a) then the inclination
angle of the linear polarization in each local fiber changes by jumps from 0 to 77. Such a

polarization evolution is mapped on the Poincare sphere as a motion along the equator.
As a result, each component of the supermode (11) with the topological charge p =1/2

acquires the Pancharatnam—Berry phase [15] @, =T that is of the *“hidden phase”

considered above.
Let us consider a diagram representation of transmission of the vortex field with
integer-order topological charges through a fiber array with half-integer-order index p

presented in Fig. 5.
Case 1. Let the circularly polarized field with the integer order vortex charge ¢ =1

be formed at the input z =0 of the array with the index p =1/2 . Naturally, we must
expand the vortex state |1> over the eigen states |1/ 2) and |—1/ 2> propagating with

their own propagation constants B and B respectively.
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Fig. 5. Diagrams of the conversion of the |1/ 2) and |—1 / 2) supermode states

The first step to turn the initial vortex field into the topologically neutral one at the
arbitrary array length consists in shaping the eigen supermodes |q> and |—q> into two the

dipoles (|1/2,-1/2)), . and (|1/2,-1/2)), . rotated through an angle ¢, =7/2 with

,=0 ¢, =nl2

respect to each other (the first line in Fig. 5 a).
The second step is of their superposition with the phase shift 77/2

cos

)= | (172-12)),  +1(2-1r2), (14)
isin @ =0 o=712

where @=kAnz/2 . However, the second term in eq. (14) is nothing but than the sum of

the odd and even states

(j172.-172)), _ =(j1/2,-1/2)) +(|1/2,-1/2))". (15)

@o=m/2

In turn, each topological dipole can be presented as a sum of two modes |1/ 2) and

|-1/2) supermodes (the second line in Fig. 5 a). As far as the supermodes are transmitted
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through the array with different propagation constants A= - , we will observe
the conversion of these states at the beating length A =77/AB . The conversion of the
integer-order states |1> e’ - |—1> ¢ in the form of changing the phase starcase CD(x, y)
is shown in Fig. 5 b.

Case 2. Let the transverse electric field (|T E ) mode state) be incident on the array

input. The input field is of a superposition of two vortex constructions |1> e, |—1> e that

have been regarded in Case 1. The state conversion develops in the frameworks of the
above written diagram. We will observe the consecutive alternation of the |TE> and

2
|TM > (transverse magnetic) states at the half-beating length L, , =—— shown in Fig. 5
kln

m
whereas the conversion of the |1/ 2) o |—1 / 2> states take place at the length L, =——.
kln

The detailed calculation shows ([1-8]) that if the projections of the electric field at
the array input z =0 onto the X'.¥' local axes of the j—h fiber are I, and L , the

amplitudes of the circularly polarized components A, at the a - fiber in the global
coordinates X,Y can be written as

iLﬂzz ivh
AL=Y KUK (1e® iLe™)e ” ” (16)

v,Jj

Let a right polarized field with the amplitude
A! Osinng, exp(-i2jg,) . (17)

where the indices n-odd and ¢ - half-integer, be incident onto the fiber array with the
index p . Then the field amplitude at the z — section of the array is

A* [ G\/ﬁg AZ exp{r—rgcosw —2¢a)} X
a=0 w
(18)

_'a
cos@e

. az . .

o — sm[a¢n ——cos ¢2p sin ¢z,,-2q sin ¢nJ
isin@e B

In fact, the obtained equation is the analog of the expressions for the expansion into a
series of the field with a fractional-order vortex fields over the integer-order ones in a
continuous medium but for the fields in the discrete anisotropic media. When propagating
the initial right hand polarized field with the fractional charge ¢ induces the left hand
polarized component with the fractional charge 2p —¢ modulated by the factor sing

while the right-hand polarization has the factor cos @ . Otherwise, we observe the energy
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conversion along the array between the wave fields with the orthogonal circular
polarizations but with different fractional topological charges.

Thus, the discrete fiber array with the inherent space-variant anisotropy is a particular
medium for translating and preserving light fields with the fractional-order optical
vortices. Any other fields bearing the integer-order vortices propagate through the array
only as a superposition of the fractional-order eigen supermodes. After the fiber array, the
supermode decays into many integer-order vortex beams.

From this point of view, we can regard the fractional vortex states | p> as optical

quarks (predicted in [13]) similar to that in the Standard Model of particle physics, in
particular, in the Gell-Mann’s quark model of the hadrons [12]. The optical quarks in a
free state can exist only inside the media with the inherent symmetry of the permittivity
tensor. Out of the medium the optical quarks break up into the guided modes of the new
optical structure.

CONCLUSION

We found that the space-variant birefringence with one singular point is inherent in
the fractional-order vortex-beams at the crystals input under the condition of the conical
diffraction. Typical scenario of the beam propagation here evolves in such a way that the
topological charges of the fractional-order vortices in the circularly polarized components
of vector beams differ from each other in one unit. The difference between the
propagation constants of the components is independent on the value. It means that the
biaxial crystal does not feel distinction between the fractional- and integer-order vortex
beams. The same processes we observe also in the so-called g-plates, Moreover the
polarization states at the beam cross-section are distributed by the complex way far from
that of the birefringent directions in the crystal. Naturally the fractional-order vortex
beams in the biaxial crystals and g-plates are also unstable one under propagation.

Quite another situation occurs in the discrete circular fiber array. The space variant
birefringent axes in the fiber array are exactly recreated at the field cross-section. Such a
polarization distribution is well preserved along all fiber array length in the form of a
supermode. The shaping of the array eigen supermode is carried out due to the non-
adiabatic following of the polarization states between the modes of the neighboring fibers
when a linear polarization of different parts of the field follows strictly the birefringent
axes of the local fibers. Thus, the fractional topological charge of the supermode is
specified by the space-variant birefringence of a fiber array. A part of the “glue” of a great
number of integer-order vortices into a single fractional-order one plays the evanescent
waves between the local fibers.

We revealed a remarkable effect of shaping the integer-order vortex in a fiber array.
Each integer-order vortex is of a superposition of four fractional order vortices with
different propagation constants so that the integer-order mode decays and gathers together
again along the array. We came to call them the optical quarks owing to resemblance of
their behavior with that of quarks in the Standard Model of particle physics. The optical
quarks can exist only inside the medium with an appropriate structural symmetry. Outside
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the medium, the optical quarks are transformed into a cloud of standard integer-order
vortices.

References

1. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, F. Sciarrino, J. Opt. 13,
064001 (2011).

2. S. Slussarenko, A. Murauski, T.Du, V. Chigrinov, L.Marrucci, E.Santamato, Opt. Express 19,
40854090 (2011).

3. F. Cardano, E. Karimi, L. Marrucci, Corrado de Lisio, E. Santamato, Opt. Express 21, 8815-8820 (2013).

4. T.Ritari, H.Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. R. Folkenberg, M. D. Nielsen, Opt.
Express 12, 5943-5939 (2004).

5. A. Bezryadina, D. Neshev, A. Desyatnikov, J. Young, Z. Chen, Yu. Kivshar, Opt. Express 14, 8317-8327
(2006).

6. S.Lee Yong, G.Lee Chung, Jung Yongmin, Oh Myoung-kyu, Kim Soeun, J. Opt. Soc. Korea 20,
567-574 (2016).

7. C.N. Alexeyev, A. V. Volyar, M. A. Yavorsky, Phys. Rev. A 80, 063821-12 (2009).

8. C.N. Alexeyev, A. O. Pogrebnaya, G. Milione, M. A. Yavorsky, J. Opt. 18, 025602 (2016).

9. M. R. Dennis, Opt. Commun. 213, 201-221 (2002).

10. M. V. Berry, J. Opt. A 11, 094001 (2009).

11. A. Yariv, P. Yeh, Optical waves in Crystals (John Wiley & Sons, 1984), 102 p.

12. S. M. Wong, Introductory Nuclear Physics (Wiley Interscience Publication, 1998) 355 p.

13. A. V. Volyar, Ukr. J. Phys. Opt. 14, 31-42 (2013).

14. Fornel F. de, Evanescent waves (Springer, Heidelberg, 2001) 111 p.

15. M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes”, in Proceedings of the Royal
Society A 392, 45-57 (1984).

IMPOCTBIE ®OTOHHBIE KPUCTAJLJIbI KAK CPEJICTBO
CYHIECTBOBAHUS OIITUYECKUX KBAPKOB
Bonsap A. B., Anexcees K. H., Ezopog I0. A., Akumosa A. E’

Qusuxo-mexuuueckuii  uncmumym,  Kpvimckuii  pedepanvuviii  ynusepcumem — umenu
B. H. Bepnaockozo, Cumepeponons 295007, Poccusn
*E-mail: yana akimova 1994@mail.ru

B nacTosimieii paboTe moka3zaHo, YTO B IByXOCHBIX KpUCTaJIaX MPH YCIOBUU KOHUYECKOM
IuQpakuuu ApoOHbIE BUXPU HEYCTOWYMBBIL. MBI TaKkke MPOAEMOHCTPUPOBAIH, YTO
KpYroBasi BOJIHOBasl pellleTKa C IIPOCTPAHCTBEHHO-BAPUAHTHBIM [JBYJIYy4elPEIOMIICHUEM
ABJSIETCS. MOIAXOAAINEH cpelod Uil BHUXPEBBIX IIYYKOB ApoOHOro mnopsnaka. B Takux
MaccuBax CyHEepMOJbl MOTYT HMETh IOJYLENbIE TOPSIAKOBBIE BUXPH B KPYTOBBIX
KOMIIOHEeHTax. Pemaronias poiab B (pOPMHPOBAHMU TaKUX CYNEPMOJ UTPAET yCKOPEHHE
(a3l CHHXPOHU3AIUH OTACNBHBIX BOJOKOHHBIX MOJ B COYETAaHWU C TyHHEIHPOBaHHEM
COCTOSTHUM HOJSPHU3aLUN MEKIY aHM30TPOIHBIMU BOJOKHAMHU B MaccuBe. MBI MoKa3anuy,
4yTo mpupauieHue (aszbl MEJIOYHUCICHHOTO 3apsia B CyNepMOAy ApPOOHOTO MOpsaKa
COCTOMT U3 JIByX BKJIam0B (Da3bl ¢ MOJOBUHOM Iiejoro 3apsijaa. HesBHbIM Bkiaa ¢asbl ¢
nojaynenod cymMmMod (WM  «cKpbITasg ¢aza») o0OyCIOBIEH W3MEHEHHWEM 3Haka
aMIUTUTYIHBIX KO3((HUIUEHTOB B KOMIIOHEHTaX IIOJSA, COOTBETCTBYIOIIMX pa3pe3aM
BOJTHOBOTO (hpoHTa. MBI TaKk)Ke MPOBENIN CPABHEHHE CKPBITBHIX M THIPOIMHAMHYIECCKUX (a3
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B CBEPXTEKYYHX APOOHBIX BUXPSAX C AHAJOTUYHBIMH (azaMu B CymepMojax IpOOHOTO
MOpsIKA.

Knwouesvie cnoea. onTHUECKU BUXPH, APOOHBIH TOMONIOTMYECKHUN 3apsill, CyHepMOIbI
JIPOOHOTO MOPS/IKA, CKPBITas (pa3a, MACCUB ONITUYECKUX BUXPEH.
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