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This paper analyzes the Einstein equations for a closed null string, collapsing in a plane z = 0. It is shown that
the solution of Minkowski can’t be regarded as the asymptotic behavior of the gravitational field generated by
a null string.
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INTRODUCTION

Historically, the problem of boundary conditions in the general theory of relativity
was related to questions of cosmology and therefore formulated as the problem of the
boundary conditions at infinity. In [1], Einstein outlined three possible solutions:

1. At spatial infinity, an appropriate choice of the coordinate system to the metric

tends to the metric of flat Minkowski space;

2. There is no boundary conditions, which could claim to universal validity (each
task should be an individual decision of this question);

3. General equations of the field to be changed by the introduction of additional
(cosmological) term so that the space was closed, than remove the question of
boundary conditions.

Although in the same paper, it was noted that the hypothesis 1 is not always
consistent with the notion of the relativity of inertia and does not agree with some
statistical considerations, Assumption 2 does not actually correspond to any solution of
the problem, and hence the rejection of its solutions, and in the case of the 3 we get a
generalization of the field, which is not supported by our actual knowledge of gravitation.

In [2], based on the classification of gravitational fields on the algebraic structure of
the curvature tensor invariant formulated solution of the boundary conditions.

First of all, it should be noted that, according to [2], type of spaceV, , for a given n,
determined by the so-called characteristic A — matrix (R(Z s — g, ﬁ), where R, — tensor
Richie, 8up — the metric tensor of the space V, ,a, f=1,...,n. When n=4 there are

only three types of gravitational fields of general form 7,, i =123, in terms of the

algebraic structure of the tensor space-matter. These types correspond to the three possible
types of characteristics 4 — matrix.
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Formulated in [2], the principle of superposition states that the boundary conditions:
if there is a gravitational field 7, (i = 1,2,3), then for areas where 7,, — 0, and,

accordingly, Raﬂ -0, (Taﬂ — energy-momentum tensor) the components of the metric

tensor g,, of the gravitational field should be arbitrarily close to the corresponding
components of the metric tensor space, which is the space of the same type as the given,
and allows the maximum possible for this type of space group of motions.

For example, for spaces 7;, curvature, which is expressed in the deviation from zero

of the curvature tensor, is caused, by the presence of gravitational mass. As the distance
from the masses (for example, on a hypersphere of infinite radius to the Schwarzschild
solution, in polar coordinates) of the gravitational action is weakened, “curvature” of

space is smoothed, it becomes more uniform and tends to space 7, as possible for this

type of space group movements (Minkowski space).

Proposed in [2] formulation solution of the boundary conditions is a group-invariant
and independent of the choice of coordinates. It is important to note that an attempt to put
the solution of a problem for the space of a specified type of boundary conditions of
another type should lead to a contradiction, since the degeneracy of the metric and the
change in the type of space in this case is not physically be motivated.

In other words, if for a group of motions of spaces 7, is a group G,,, for the space
T, group Gy, and for the space T, group G,, then flat Minkowski space can not be

considered as the boundary conditions for the space type 7, and 7.
Space generated by the different distribution of real massless scalar field, the special
cases are different and the “string-like” distribution, refer to spaces of the type 7} .

The goal was to show that the gravitational field generated by a closed “thick” null
string collapsing in a planez =0 can’t be as asymptotic flat Minkowski solution. In a
cylindrical coordinate system x° =7, x' = 0, x* =0, x’ =z, functions x" (Z', 0),
determine the trajectory of the closed null string, have the form:

t=r,p=—r,6’=a,z=0,re(—oo;O], €))
where 7 and o — there are options on the world surface null string.

Since the zero-string implement zero tension limit of string theory [3], the
components of energy-momentum tensor for the null strings are of the form

™ .\|—-g= 7Jd'rdox,’fx,’;54(xl —xl(T,O')), (2)
where the indices m,n,! take values 0,1,2,3, xl=ox/0t, g=|g,,

tensor of the outer space, y =const. For (1) non-zero components are such energy-

, &,. — the metric

momentum tensor (2)

T =T"=-_1"= ﬁ 5(z)5(n). (3)

where n=t+p.
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Using the results of [4, 5], the general expression of the quadratic form describing the
movement of a null string, determines the trajectory of (1) can be written as

ds® =e*(dt) — Aldp) — B(d6) —e*(dz), (4)
where: v, 1, A, B are functions of variables 7, p, 0, z. At this stage it is important to note
that the decision of the Minkowski one of the special cases (4)

e =e* =4=1, B=p’.
Since the trajectory of (1) must be one of the solutions of the equations of motion null
string, it is possible to obtain restrictions on the metric functions, in which the trajectory

of the zero-string remains unchanged. Motion null strings in a pseudo-space-time is
determined by the following system of equations [2]:

m m . .pPyq9 _
xo + I xix] =0, Q)
gmnx,’fx,,zl' = 0 4 gmnx,”;x,’:f = O 2 (6)

where (5) — this is the equation of motion and the null string, (6) — constraint equation,
F;”q — Christoffel symbols of the external space-time. The first equation of (6) to (1) has

the form e*” — 4 =0, wherefrom
e’ =4. (7)
The remaining equations in (5) and (6) to (4) subject to (7) are reduced to a single
equation vV, —V , = 0, where from

v=v(n,0,z). (8)

Analysis of the Einstein equations for the quadratic form (4) and a component of the

energy-momentum (4), under the conditions (9), (10), can complete the definition of the
functional dependence of metric functions, namely:

MU= y(n, 0, z), B= B(i], 0, z), 9)
while the system itself is the Einstein equations can be written as
1 BJ?U ( )2 1 B’U ’ 2 1 BJ] —
Ty Ty W) PRt )T A e 1o
2
1B 1(B 1B
PRl IV (VR LY 2 ———=u,-v, )|+
S e
) (11)
2v
e 1B
+ Voo T Hog T (V,e )2 + (:u,a )2 - __"9(,/’9 + :uﬂ)"' Volly | = 0
B 2 B
S +2 15,8, 5, 5, 2 0 (12)
— Vv ___’_’__’V _ —_ V_ = ,
B " 2B B B ©° B Ho =tz
B
eTﬂ(ZV’ZZ + 3(V,z - Zv,zll’l,z )_ 2‘/,6’#,6’ - (V,Q)Z = O 2 (13)
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(V,z)2 TV, B;; _%(2‘/,69 +3(V,€)2 TV %) =0, (14)
B
Vo T Hyo _E?U(Vﬁ +:u,9)_,u,;7(‘/,.9 _/1,9): 0, (15)
B
Ve +V,z(V,e _,U,e)_‘/,e —=0. (16)

B

As follows from (3) is a string, all the components of the string energy-momentum
tensor are zero and non-zero (to infinity) directly on the string, which allows us to study
the system of Einstein's equations for the problem in two ways:

e Limit the analysis to the “external” problems.

e Of the component string energy-momentum tensor as the limit of a “thick”

distribution and analysis of Einstein's equations for this “thick” distribution.

As shown in [6-8] analysis of “external” problem leads to a large number of vacuum
solutions of Einstein's equations satisfying the symmetries of the problem, however,
remains unclear criteria allowing you to select from this set of solutions describe the
gravitational field of a null string moving along the path (1). When you try to consider the
components of the energy-momentum tensor of the string as the limit of a “thick”
distribution, for example, a simple replacement of the delta functions in the tensor (2) the
appropriate delta-function sequences are possible inaccuracies related to the fact that it is
unclear how to account for the possible emergence of terms (factors) that tend to zero
(constant) the contraction of “thick” distribution of a one-dimensional object. Therefore, it
is easier initially considered a “well-defined” “thick” distribution, for example, a real
massless scalar field (because the task at hand, we consider the scalar null object), and
then pull it to the string configuration required, while requiring that the components of the
energy momentum of a scalar field in the limit of this compression asymptotically
coincide with the components of the tensor (3).

For (7), (8) the expression 64) takes the form

ds* = ((de) —(dp) )~ B(dO) — e (d=F . (17)

ANALYSIS OF THE RESULTING SYSTEM OF EINSTEIN FOR THICK
DISTRIBUTION

Energy-momentum tensor for a real massless scalar field is [7]

1
Taﬁ = ¢,a¢,ﬂ - 5 gaﬂL > (18)

where L =g PuPy> P, =0p/0x“, ¢ — potential of the scalar field, indices a, B

range 0,1,2,3. For the self-consistency of the Einstein equations will require
Taﬂ=Taﬁ(77,6?,z)—)go=(p(77,l9,z). (19)
Writing equation (18),
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(o] fed) gy 2(od d) )

B B

%((qo,g)z - eli, (co,z)zj, I=T:=0,0.. 1, =0,0,, (20)

2u
Ty=0up., Tis= %((¢z)z _%(¢,a)2j'

For (17) and (20) the system of Einstein's equations can be written as

B
—,U,m,——— ( )Z+ (—"J +2v,,][,u,7+%?)=;(((pﬁ)z, (21)
2
<>[ o f il B _l(B,ZJ v LBy, )] .

2 B 4\ B 2 B
2v

+ eB (V,ay T Hpgt (V,9)2 + (ﬂe)z ___( + ﬂe)"‘VeﬂaJ , (22)

__ (o) (o)

2 e B
B B_B B B
%?’” tV, —i?;"f —% 2V —%;ﬁ My =1V == XP P (23)
e% (Zv,zz + 3(V,z )2 —2v. u, )_ vy — (V,a )z = %((ﬁoﬁ - e% ((0,2 )zj > (24)
2pu
(. 2o, 2 - g(@z)z_%(%)z} o)
B
Voo T Huo — % ?ﬂ (V,e Tt Uy )_ H, (V,e —Hy ) =XP,Po> (26)
B

VgtV (V,a —Hy )_ Vo fz =XPoP.- (27)

Since the covariant derivative of the components of the Einstein tensor is zero, i.e.
Gf; 5= 0, where Gf — the Einstein tensor, the semicolon denotes the covariant
derivative, demanding the equality
T, a/jﬁ =0,
for (18), we obtain the equation that must satisfy scalar field potential [7]
(ep.,), =0. (28)
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For (17), equation (28) takes the form

P, 0 v 1 u _
2 O ol enB)- 2 L nlparenB)-o. oo
Total (24) and (25) is
V,z 6 v _— _ e v v _—u —
T ( (v e’e \/_)) 80( (Vﬁe e \/E)) 0. (30)
Comparing (29) and (30) that
V. 20(77)(/7,2 nv,= C(’?)Q’,e- (31
Integrating (31) we
w(12,0,2)=c(n)p(n,0,2)+ a)( ,0) (32)
and
v(1,6,2)=c(n)p(n.0,2)+wln,2), (33)
It follows that
v(17,0,2) = c(n)p(n,0,2)+ o, (). (34)

Consider the resulting system of equations (21) — (27) for the distribution of the
scalar field, concentrated within the “ton” of the ring, for which the variables 77 and z

change within

ne[—An;An], Ze[—Az;Az], (35)
where the positive constants A7 and Az define the “thickness” of the ring
An <<1, Az <<1, (36)

and in the limit of compression of the “thin” rings in a one-dimensional object (a null
string)
An—0, Az—0. (37)
Then the space-time in which moves a “smear” null string, and for which the
variables 77 and z change within
ne (— oo;+oo), ze (— oo;+oo), 0e [0;272'] (38)
can be divided into three areas:
e region I, for which

ne (— oo;—An)u(An;+oo), ze (— oo;+oo), e [0;271-], (39)

e region II, for which
ne [— An;An], ze (— oo;—Az)u (Az;+oo), Oe [0;27[], (40)

e region III, for which
ze[—Az;Az], ne[—An;An], 96[0;272’]. (41)

Since the contraction of the scalar field in the string equations (21) — (27) for the
scalar field must asymptotically tend to the system (10) — (16) for a closed null string, in
the region I, 11

(D_>05 ¢,Z—>Oa (/7,;7_)0, (Dﬁ_)o (42)
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and in the region 111, in general,
(p;tO,(p,z;tO,(p’n;tO. (43)

Comparing equations (10) — (16) for a closed null string with the system (21) — (27),
it can be concluded that the contraction of the scalar field in the string, that is, when

An—0, Az—0
of > O 2 o

2
e#

((%)2 - %(% )zj -0, 9,0,—0, (44)

(qo,zgoﬁ ) —0.

In the region I, according to (43), for any fixed value of the wvariable
n=n,e (— oo;—An)u(An;—l—oo) for all values z € (— oo;—l—oo), the potential of the scalar
field

o(17,,0,2) = 0. (45)

If we consider the distribution of the potential of a scalar field for each fixed variable

n=n,e [— Az;Az], (region II and III), in the case where the variable

zZ€ (— oo;—Az)u (Az;+oo) (region IT), must be made

o(17,,0,2z) >0, (40)
and forz [— Az, AZ] (region III)
@(17,,60,2)#0. 47)
For conditions (45) — (47) the potential distribution of a scalar field is conveniently
written as
olz,0,n)=~In(ax(,0)+ A(,0)1(2,0)), (48)
and the potential of the scalar field must satisfy closed null string, i.e.
0(12.6.2),- = 9(11.6.2)55 (49)
Functions a( ,9) and /1(77, 9) symmetric with respect to inversion 77 to —7:
a(n,0)=a(-1n.0), A(n,0)=(-n,0). (50)
According to (49)

05(77,6‘)0:0 = 05(77,49)9:2,[, /1(77’9)‘9:0 = /1(77’9)9:2”’ f(H, Z)a:o :f(eaz)azzn- (51)
Function a( , 9)+ ﬂ,(n, H)f(z, 9) is bounded, i.e.

0<a(n,0)+An,0)f(z,6)<1, (52)
and the potential of the scalar field (48), in (52), can range from
@ —0,at a(n,0)+ A(n,0)f(z,0)=1, (53)
to
@ — 0, at a(n,0)+An,0)f(z,0) >0, (54)
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and in the region I, in accordance with (45) and (53)
a(n,0)—1, An,0)—>0. (55)
Since, by (48), the potential of the scalar field in the region Il is zero, and for
ne [—AU;AU] any fixed value of the variable z=z, (— oo;—Az)u(Az;—l—oo) must be
done
a(n,0)+ An,0)f(z,,0)—1. (56)
In the region III, @#0, so for the same values 7€ [—A?];A?]] and
z=z,€ [— Az; Az]

0 < aln,0)+ An,0)f(z,,0)<1. (57)
For (56) and for z € (— oo;—Az)u (Az;+oo)
f(z,0)— f, = const, (58)
moreover f, # 0, and the functions a(n, 49) and /1(77, 49) are linked
Mn.0)=(~aln,0))/ f,. (59)
Substituting (58) and (59) to (56) that in the III (¢ # 0)
0<aln,0)+(1-aln,0)f(z,0) 1, <1, (60)
then (54), (60) it follows that ¢ —> oo
a(17,0)—>0, £(z,0)—0. (61)

Thus, in the expression for the potential of the scalar field (48), and the limited
functions c(17,0) and £(z,0) for all z € (—o0;+00) u 77 € (—00;+00) take values
0<aln,0)<1,0< f(z,0)< f,. (62)
Behavior of the function [ (Z, 9) at z € (— OO;—AZ)U(A2;+OO) defined in (58), and
at z — 0, according to (61)
f(z,0)—0. (63)
Since the zero-string moving along the path (1) at any given time is a circle, then the
potential of the scalar field (48) does not depend on &, i.e.

¢ =0ln.2). (64)
For (60), equality (34) takes the form
v(7,2)=c(n)pln.2)+ wln). (65)
taking into account (7) we find that
A= An,2). (66)
For (64), (65) and (66) of (27) takes the form
V.og=0, (67)
it follows that
p=pu(n,z). (68)

Rewriting (25) to (64), (65) we find that
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B
(v.)+v. - =§(¢, ). (69)

As in (69) @ and v are functions of variables 77 and z, and that B, /B is a

function only of variables 77 and z , and where

)~
B(1.6,2)=(B(0)) B(n.2). (70)

Since the function B in the quadratic form (15) is at (d 6’)2 , than you can always
make a transformation of the coordinate system d@’ = ﬂ(n)d@ in which the dependence

B on the variable @ is removed, so in the future without loss of generality we assume
that
B=B(n,z). (71)
In [5] analyzed the Einstein equations for the metric functions are independent of the
variable € where it was shown that the only possible solution for the closed null string
collapsing in the plane z =0 is

= 1) ([ rhanf ) e gl o
se)=(([eslrin) ) " ewleolen) )
e = L([enanf ) " o, eole vaz o). o

0
From the above solutions can be seen that it is not under any values of the variables
and the specified function does not lead to a solution of Minkowski.

CONCLUSIONS

This paper analyzes the Einstein equations for a closed null string collapsing in the
plane z=0. Noted that the decision of Minkowski is a private case of the initial
quadratic. However, it is shown that the solution of Minkowski can not be considered as
an asymptotic behavior of the gravitational field generated by a null string. This result
confirms the generally formulated in [2] invariant (group) solution of the boundary
conditions in general relativity, based on the classification of gravitational fields on the
algebraic structure of the curvature tensor.
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JleasikoB O. I1. /Io nuTaHHSA NP0 rPAaHUYHHX YMOBax HyJb-cTpyHu / O. IL. Jleasikos, A. C. Kapnenko //
Bueni 3ammcku Taspiiicekoro HarioHansHOTO yHiBepcutery imeHi B. M. Bepuancekoro. Cepis: ®isuko-
MaTeMaTH4Hi Hayku. — 2013. — T. 26 (65), Ne 2. — C. 79-88.

VY naniit po6OTi IPOBEICHO aHAI3 CUCTEMH PiBHAHb EHHINTEHHA A 3aMKHYTOT HYJIb-CTPYHH, 0j KOJAINCYI0€
B rroniuHi z = 0. [Toka3aHo, 1m0, pimeHHss MiHKOBCBKOTO HE MOXKE PO3IIISIAATHCS B SKOCTI ACHMITOTHKH JUIS
rpaBiTaliifHOro MoJIst HOPOKYBAHOTO HYJIb-CTPYHOIO.

Kniouogi cnosa: Hynp-cTpyHa, CKalspHe MoJIe, TPaHIMYHI YMOBH, IPOCTip MiHKOBCBKOTO.

Jleasiko A. II. K Bonpocy 0 rpaHM4YHBIX yCJ0BHSX HYJAb-cTPYHBbI / A. IL. Jlensikos, A. C. Kapnenko //
Yuensle 3anmcku TaBprueckoro HalOHAJIBHOTO YHHBepcuTeTa nMeHn B. U. Bepranckoro. Cepus : @uznko-
MaTteMaTtndeckue Hayku. —2013. — T. 26 (65), Ne 2. — C. 79-88.

B nmanHOlf pabGoTe mHpOBeleH aHANMM3 CHUCTEMBl ypaBHEHHH OMHIITEHHAa M8 3aMKHYTOH HYJIb-CTPYHEL,
KOJUTarcupylome B miockocta z = 0. [TokaszaHo, 9To0, penreHre MUHKOBCKOTO HE MOXKET pacCMaTPHBATHCS B
Ka4eCcTBE aCHMITOTHKH JUIS TPAaBUTAIMOHHOTO ITOJISI HTOPOXKIAEMOT0 HyJIb-CTPYHOH.

Knrouesvie cnosa: Hynb-cTpyHa, CKalIIpHOE M0JI€, TPAHUYHBIE YCIOBHUS, IPOCTPAHCTBO MUHKOBCKOTO.
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