Ученые записки Таврического национального университета имени В.И. Вернадского Серия «Физико-математические науки». Том 23 (62). 2010 г. № 1. Ч. I. С. 98-106

УДК 537.86

РЕШЕТКА ТОНКИХ МАГНИТНЫХ ПРОВОДОВ В ПРЯМОУГОЛЬНОМ

волноводе

Пономаренко В.И., Попов В.В.

Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина E-mail: <u>slavapop@gmail.com</u>

Получено аналитическое решение задачи рассеяния для двух магнитных микропроводов, расположенных в плоскости сечения прямоугольного волновода на фоне металлического короткозамыкателя. Используя известное численное решение задачи рассеяния на индуктивном немагнитном металлодиэлектрическом цилиндре, получено в случае тонких проводов решение задачи рассеяния для решетки с произвольным количеством магнитных проводов.

Ключевые слова: магнитные микропровода, задача рассеяния, прямоугольный волновод.

введение

Аморфные магнитные микропровода в стеклянной оболочке диаметром от 1 мкм до нескольких десятков микрометров, которые изготавливаются по методу Тейлора-Улитковского, обладают рядом физических свойств и эффектов, которые делают их перспективными в плане практического применения [1-3]. К таким эффектам относится эффект гигантского магнитного импеданса (giant magnetic impedance – GMI), который состоит в сильном (до 200%) изменении импеданса магнитомягкого микропровода при его перемагничивании во внешнем магнитном поле. Эффект GMI наблюдается в широком диапазоне частот от 10 МГц до 12 ГГц, причем его максимум определяется в основном составом материала провода, а также технологическими особенностями производства [4, 5].

Измерения импеданса в основном проводятся с использованием коаксиальных линий, в которых исследуемый микропровод замещает участок центрального проводника [6]. В работе [7] предложен волноводный метод измерения импеданса микропроводов, который основан на измерении комплексного коэффициента отражения от микропровода, помещенного в прямоугольный волновод на фоне металлического короткозамыкателя. Теоретической основой метода является решение задачи рассеяния на одиночном тонком проводе в прямоугольном волноводе, которое связывает комплексный коэффициент отражения и импеданс. Комплексный коэффициент отражения может быть измерен как с помощью векторного анализатора цепей, так и с помощью многорезонансного метода [8–10]. По сравнению с коаксиальными методами, применение прямоугольного волноводного тракта позволяет расширить диапазон измерений импеданса до

нескольких десятков ГГц, а также уменьшить трудоемкость таких измерений и повысить точность [11].

Поскольку интенсивность взаимодействия провода с электромагнитной волной в большой степени определяется количеством вещества, помещенного в волновод, для проводов, диаметр которых составляет от одного микрометра и меньше, чувствительность методов, как коаксиального, так и волноводного, существенно снижается. При измерении импеданса в прямоугольном волноводе чувствительность можно повысить, путем увеличения числа микропроводов в измерительной ячейке, т.е. организовав из них решетку.

Увеличение числа проводов влечет за собой необходимость решения соответствующей задачи рассеяния. Для системы двух магнитных микропроводов, расположенных симметрично в плоскости сечения прямоугольного волновода параллельно его узкой стенки, в работе получено аналитическое решение задачи рассеяния.

В случае системы с числом проводов больше двух можно рассматривать задачу как задачу рассеяния на обобщенном индуктивном цилиндре и применять методы расчета элементов матрицы рассеяния, аналогичные [12, 13]. При этом, в случае однородного цилиндра, ему сопоставляются две совокупности токов, одна из которых расположена в области цилиндра и излучает в свободный волновод, а другая – вне цилиндра и излучает в волновод, заполненный веществом с проницаемостью такой же, как у цилиндра. Система уравнений для определения токов следует из условия непрерывности тангенциальных составляющих поля на поверхности цилиндра. В случае неоднородного по сечению цилиндра, т.е. в случае решетки, система уравнений существенно усложняется, и алгоритм становится громоздким.

В работе [14] предложен численный алгоритм решения задачи рассеяния на криволинейном металлодиэлектрическом цилиндре, основанный на сопоставлении области цилиндра с диэлектрической проницаемостью \mathcal{E}_p эквивалентной совокупности сторонних токов свободного волновода, определяемых из условия самосогласования. В настоящей работе показано, что в случае тонких проводов алгоритм [14] может быть применен и для расчета элементов матрицы рассеяния решетки, состоящей из произвольного числа магнитных проводов.

1. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ РАССЕЯНИЯ ДЛЯ ДВУХ МИКРОПРОВОДОВ

Схематическое изображение рассматриваемой задачи приведено на рис. 1. В прямоугольный волновод в плоскость z = 0 помещены два микропровода диаметра $\delta \ll a$, где a – размер широкой стенки волновода. Координата первого провода x_0 , координата второго провода $(a - x_0)$. В плоскости z = l в волноводе

установлен плоский металлический короткозамыкатель. Из области $z = -\infty$ волновода распространяется волна типа H_{10} с временной зависимостью $e^{-i\omega t}$, $i = \sqrt{-1}$.

Рис. 1. Пара микропроводов в прямоугольном волноводе.

Поскольку радиус провода мал, объёмное распределение тока в нём можно аппроксимировать линейным током. Тогда, ввиду симметричного расположения проводов и такой же симметрии поля падающей волны $E_0 = \sin \frac{\pi x}{a} e^{i\Gamma_1 z}$, y – компонента поля в точке с координатами (x, z), создаваемая бегущими по проводам токами будет равна [15]:

$$\widetilde{E}^{\pm} = -\frac{2I}{a} \sum_{k=1}^{\infty} W_{2k-1} \sin\left(\frac{(2k-1)\pi}{a}x\right) \sin\left(\frac{(2k-1)\pi}{a}\widetilde{x}\right) \cdot e^{\pm i\Gamma_{2k-1}z},$$
(1)

где I – ток, $W_{2k-1} = \frac{\omega \mu_0}{\Gamma_{2k-1}}$, $\Gamma_{2k-1} = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{(2k-1)\pi}{a}\right)^2}$ – постоянная

распространения, μ_0 – магнитная проницаемость вакуума, c – скорость света. Результирующее поле в областях z < 0 и z > 0 волновода запишем в виде:

$$E_{I} = E_{0} + \tilde{E}^{-} + E^{-}, \ z < 0 \ \text{м}$$

$$E_{II} = E_{0} + \tilde{E}^{+} + E^{-}, \ z > 0,$$
(2)

где E^- – поле, отраженное короткозамыкателем. Импеданс провода по определению [16] равен:

$$\frac{E_I(x_0, -r) + E_{II}(x_0, +r)}{2} = ZI, \qquad (3)$$

где $r = \delta/2$ – радиус провода. Из (1)-(3), накладывая условие $E_{II} = 0$ в плоскости z = l, получим для коэффициента отражения, нормированного на плоскость z:

$$R = e^{-2i\Gamma_{1}z} \left\{ \frac{2I}{a} W_{1} \sin \frac{\pi x_{0}}{a} \left(e^{2i\Gamma_{1}t} - 1 \right) - e^{2i\Gamma_{1}t} \right\},$$
(4)

$$I = \frac{A}{Z - \frac{W_{1}}{a} \left[F(2l+r) + F(2l-r) + 2F(r) \right]},$$
(4)

$$A = \frac{1}{2} \sin \frac{\pi x_{0}}{a} \left(e^{i\Gamma_{1}r} + e^{-i\Gamma_{1}r} \right) \left(1 - e^{2i\Gamma_{1}t} \right)$$

$$F(s) = \sum_{m=1}^{\infty} \frac{\Gamma_{1}}{\Gamma_{2m-1}} \sin^{2} \frac{(2m-1)\pi x_{0}}{a} e^{i\Gamma_{2m-1}s}.$$

Выражение (4) устанавливает связь между импедансом проводов и комплексным коэффициентом отражением, т.е. решает прямую задачу. Используя выражение (4) можно также определять импеданс провода по измеренному значению коэффициента отражения, решив таким образом обратную задачу.

2. ЗАДАЧА РАССЕЯНИЯ ДЛЯ РЕШЕТКИ ТОНКИХ ПРОВОДОВ В ПРЯМОУГОЛЬНОМ ВОЛНОВОДЕ

Построен численный алгоритм решения задачи рассеяния для решетки с произвольным числом тонких магнитных проводов. Схематическое изображение рассматриваемой задачи приведено на рис. 2. Область, в которой расположены провода, ограничена плоскостями z_1 , z_2 . Из области $z = -\infty$ распространяется первичная электромагнитная волна V^0 , требуется вычислить поле вторичных волн V^- , V^+ . Ввиду однородности структуры вдоль оси y электрический вектор этих волн имеет отличную от нуля лишь y – компоненту.

Рис. 2. Решетка магнитных микропроводов в прямоугольном волноводе.

Аналогично [14] совокупность тонких проводов рассмотрим как индуктивный цилиндр, который состоит из отдельных элементарных импедансных стержней с

одинаковой площадью поперечного сечения $s_p = \pi \delta^2/4$, рис. 2. Электрическое поле в сечении s_p будет определяться как сумма поля набегающей волны $E^{(0)}$ и рассеянных полей от всех стержней \tilde{E}_n , за исключением стержня с номером p:

$$E_{p} = E^{(0)}(x_{p}, z_{p}) + \sum_{\substack{n=1\\n \neq p}}^{N} \widetilde{E}_{n}(x_{p}, z_{p}),$$
(5)

где $N \ge 2$ – число проводов.

При достаточно малой площади сечения s_p , элементарный стержень может быть заменен на направленный вдоль оси y линейный ток I_p с координатами (x_p, z_p) для которого справедливо следующее соотношение, принятое при расчетах излучения и отражения волн тонкими вибраторами [17]:

$$I_p = E_p / Z . (6)$$

Импеданс провода Z выражается через функции Бесселя [16]:

$$Z = \frac{k}{2\pi\sigma r} \frac{J_0(kr)}{J_1(kr)}, \ k = \sqrt{-i\omega\sigma\mu\mu_0},$$
(7)

где σ – статическая удельная проводимость материала провода, $r = \delta/2$ – радиус микропровода, μ – эффективная относительная магнитная проницаемость материала провода, J_i – функция Бесселя порядка i.

Выражение для электрического поля \widetilde{E}_p в точке с координатами (x, z), создаваемого током I_p с координатами (x_p, z_p) , аналогично (1), имеет вид:

$$\widetilde{E}_{p} = -\frac{I_{p}}{a} \sum_{k=1}^{\infty} W_{k} \sin\left(\frac{k\pi}{a}x\right) \sin\left(\frac{k\pi}{a}x_{p}\right) \cdot e^{i\Gamma_{k}|z-z_{p}|}.$$
(8)

Выбирая поле первичной волны в виде:

$$E^{(0)}(x,z) = \sin \frac{m\pi x}{a} e^{i\Gamma_m z}$$
(9)

и подставляя (8), (9) в (5) получим выражение для результирующего поля E_p в сечении s_p . Выражая из (6) величину E_p и подставляя ее в (5), получим с учетом (8), (9) систему уравнений относительно неизвестных токов $\{I_n\}$, n = 1...N:

$$\sum_{n=1}^{N} \alpha_{pn} I_n = \beta_p, \qquad (10)$$

$$\alpha_{pn} = -\frac{1}{a} \sum_{k=1}^{\infty} W_k \sin\left(\frac{k\pi}{a} x_{pi}\right) \sin\left(\frac{k\pi}{a} x_{ni}\right) \cdot e^{i\Gamma_k |z_{ni} - z_{pi}|}, \ \alpha_{nn} = -Z,$$

$$\beta_p = -\frac{1}{4} \sum_{i=1}^{4} E^{(0)} (x_{pi}, z_{pi}).$$

По значениям токов $\{I_n\}$, определяемым из решения системы (10), повторно используя (8) вычисляются поля $\widetilde{E}_p(x, z)$, p = 1, 2, ... N, в областях $z < z_1$, $z > z_2$. Суммируя эти поля, получим результирующее рассеянное поле в виде суперпозиции H_{k0} -мод свободного волновода, k = 1, 2, ...:

$$E^{\pm}(x,z) = \sum_{k=1}^{\infty} A_k^{\pm} \sin\left(\frac{k\pi}{a}x\right) e^{\pm i\Gamma_k z}, \qquad (11)$$
$$A_k^{\pm} = -\frac{W_k}{a} \sum_{p=1}^{N} I_p \sin\left(\frac{k\pi}{a}x_p\right) e^{\pm i\Gamma_k z_p}.$$

Аналогичным образом задача рассеяния решается для случая первичной волны типа H_{m0} , распространяющейся из области $z = +\infty$ в отрицательном направлении оси z. Решая задачу рассеяния при m = 1, 2, ... для первичных волн обоих направлений, строится матрица рассеяния решетки микропроводов.

3. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ И СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Для проверки предложенного в работе численного метода расчета матрицы рассеяния решетки микропроводов, было выполнено численное моделирование для пары микропроводов, расположенных симметрично в сечении волновода. Достоверность метода была установлена путем сравнения результатов расчетов со значениями коэффициента отражения, рассчитываемыми с помощью аналитического решения (раздел 1). Значения коэффициента отражения, рассчитанные для решетки из двух микропроводов изложенными выше методами, отличались не более чем на 0.001.

Результаты расчетов сравнивались так же с экспериментальными значениями коэффициента отражения, полученными с помощью многорезонансного метода измерения комплексного коэффициента отражения в волноводе [7, 8].

Рис. 3. Экспериментальные и расчетные значения коэффициента отражения от пары медных микропроводов в прямоугольном волноводе.

При измерениях использовались медные микропровода со следующими номинальными параметрами: диаметр металлической жилы 8 мкм, удельное сопротивление ~0.4 кОм/м. Результаты измерений и расчетов приведены на рис. 3. Как видно из рисунка во всем рабочем диапазоне частот прямоугольного волновода обеспечивается хорошее совпадение между теорией и экспериментом. В середине рабочего диапазона частот расхождение не превышает 0.02, что соответствует предельной точности многорезонансного метода [8]. Несколько большее расхождение между теорией и экспериментом, связанное с некоторым снижением точности многорезонансного метода, имеет место на краях рабочего диапазона частот.

выводы

Впервые показано, что в случае тонких проводов численный алгоритм решения задачи рассеяния для криволинейного диэлектрического цилиндра может быть применен для расчета матрицы рассеяния системы магнитных микропроводов. Проведено сравнение численного алгоритма решения задачи рассеяния с аналитическим решением для пары микропроводов. С помощью многорезонансного метода измерения комплексного коэффициента отражения выполнена экспериментальная проверка предложенного метода расчета матрицы рассеяния решетки микропроводов.

Список литературы

- Larin V.S. Preparation and properties of glass-coated microwires / Larin V.S., Torcunov A.V., Zhukov A., Gonzalez J., Vazquez M., Panina L. // Journal of Magnetism and Magnetic Materials. – 2002. – Vol. 249, No 1-2. – P. 39-45.
- Zhukov A. Glass-coated magnetic microwires for technical applications / Zhukov A. // Journal of Magnetism and Magnetic Materials. – 2002. – No 242-245. – P. 216-223.
- Zhukova V. Optimization of Giant Magnetoimpedance in Co-Rich Amorphous Microwires / Zhukova V., Chizhik A., Zhukov A., Torcunov A., Larin V., Gonzalez J.// IEEE Transactions on Microwave Theory and Techniques. – 2002. – Vol. 38, No 5. – P. 3090-3092.
- Makhnovskiy D.P. Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory / Makhnovskiy D.P., Panina L.V., Garcia C., Zhukov A.P., Gonzalez J. // Physical Review B. – 2006. – No 74. – P. 064205 (11 pages).
- Popov V. Studies of giant magnetoimpedance effect of Co-rich microwires in wide frequency range / Popov V., Zhukova V., Ipatov M., García C., Gonzalez J., Ponomarenko V., Berzhansky V., Vinogorodsky D., Zhukov A. // Physica Status Solidi (A). No 4. – 2009.– P. 671-673.
- D. Me'nard High frequency impedance spectra of soft amorphous fibers / D. Me'nard, M. Britel, P. Ciureanu, A. Yelon, V.P. Paramonov, A.S. Antonov, P. Rudkowski, J.O. Strom-Olsen // Journal of Applied Physics. – 1999. – Vol. 81, No 8. – P. 4032-4034.
- Бержанский В.Н. Измерение импеданса микропроводов в прямоугольном волноводе / Бержанский В.Н., Пономаренко В.И., Попов В.В., Торкунов А.В. // Письма в Журнал Технической Физики. – 2005. – Т. 31, № 22. – С. 24-28.
- Пономаренко В.И. Многорезонансный метод измерения комплексного коэффициента отражения в волноводе / Пономаренко В.И., Попов В.В. // Приборы и техника эксперимента. – 2005. – № 1. – С. 94-100.
- Пономаренко В.И. Компенсация влияния собственного коэффициента отражения направленного ответвителя в многорезонансном методе измерения коэффициента отражения в волноводе / Пономаренко В.И., Попов В.В. // Приборы и техника эксперимента. – 2005. – №6. – С. 33-36.
- Пономаренко В.И. Компенсация экспериментальных погрешностей в многорезонансном методе измерения коэффициента отражения в волноводе / Пономаренко В.И., Попов В.В., Виногородский Д.Ф. // Известия Вузов. Радиоэлектроника. – 2006. – № 8. – С. 66-70.
- Пономаренко В.И. Экспериментальное определение вклада высших мод при измерении импеданса микропроводов волноводным методом / Пономаренко В.И., Попов В.В., Виногородский Д.Ф., Бержанский В.Н. // Письма в Журнал Технической Физики. – 2006. – Т. 32, № 20. – С. 7-11.
- Y. Leviatan. Analysis of Inductive Dielectric Posts in Rectangular Waveguide / Y. Leviatan, G.S. Sheaffer // IEEE Transactions on Microwave Theory and Techniques. – 1987. – Vol. MTT-35, No 1. – P. 48-59.
- Y. Leviatan. Composite Inductive Posts in Waveguide A Multifilament Analysis / Y. Leviatan, G.S. Sheaffer // IEEE Transactions on Microwave Theory and Techniques. – 1988. – Vol. 36, No 4. – P. 779-784.
- Пономаренко В.И. Задача рассеяния в прямоугольном волноводе на криволинейном двумернонеоднородном металлодиэлектрическом цилиндре / Пономаренко В.И., Попов В.В. // Радиотехника и электроника. – 2008. – Т. 53, № 5. – С. 591–593.
- Никольский В.В. Электродинамика и распространение радиоволн / Никольский В.В., Никольская Т.И. – М.: Наука, 1989. – 543 с.
- Шестопалов В.П. Дифракция волн на решетках / Шестопалов В.П., Литвиенко Л.Н., Масалов С.А., Сологуб В.Г. – Харьков: ХГУ, 1997. – 513 с.
- Ménard D. Giant magnetoimpedance in a cylindrical magnetic conductor / Ménard D., Britel M., Ciureanu P., A. Yelon // Journal of Applied Physics. – 1998. – Vol. 84, № 5. – P. 2805-2814.
- Буторин В.М. Резонансные свойства двух металлических цилиндров в прямоугольном волноводе / Буторин В.М. // Радиотехника и электроника. – 1990. – № 12. – С. 2489-2494.
- Усанов Д.А. Резонансы в системе «штырь с зазором близкорасположенный поршень» / Усанов Д.А., Горбатов С.С. // Известия Вузов. Радиоэлектроника. – 2006. – № 2. – С. 27-33.

Пономаренко В.І. Решітка тонких магнітних проводів у прямокутному хвилеводі / В.І. Пономаренко, В.В. Попов // Вчені записки Таврійського національного університету ім. В.І. Вернадського. Серія: Фізико-математичні науки. – 2010. – Т. 23(62), № 1. Ч. І. – С. 98-106.

Отримано аналітичне рішення задачі розсіювання для двох магнітних мікродротів, розташованих в прямокутному хвилеводу на тлі металевого короткозамикача. Використовуючи відоме чисельне рішення задачі розсіювання на індуктивному немагнітному металодіелектричному циліндрі, отримано у випадку тонких проводів рішення задачі розсіювання для решітки з довільною кількістю магнітних проводів.

Ключові слова: магнітні мікродроти, задача розсіювання, прямокутний хвилевід.

Ponomarenko V.I. Lattice of thin magnetic wires in rectangular waveguide / V.I. Ponomarenko, V.V. Popov // Scientific Notes of Taurida National V.I. Vernadsky University. – Series: Physics and Mathematics Sciences. – 2010. – Vol. 23(62), No. 1. P. I. – P. 98-106.

An analytical solution is given for the scattering problem from two magnetic microwires placed in rectangular waveguide and followed with a short. Using known numerical solution of scattering by an inductive nonmagnetic metal-cylinder, in the case of thin wires new numerical algorithm is proposed for solving the scattering problem for a lattice with an arbitrary number of magnetic wires.

Keywords: magnetic microwires, scattering problem, rectangular waveguide.

Поступила в редакцию 15.12.2009 г.