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We have found the asymmetric splitting of a high-order circularly polarized vortex-beam in a uniaxial crystal.
The 1-order vortex-beam splits into the same one and the beam with the 1-1 vortices at the beam axis while one
optical vortex is shifted along the direction perpendicular to the inclination plane of the beam. Such a vortex
displacement causes the transverse shift of the partial beam. We consider this effect both in terms of the
conservation law of the angular momentum flux and on the base of the solutions to the paraxial wave equation.
We revealed that the transverse shift of the crystal traveling beam depends on neither a magnitude nor a sign
of the vortex topological charge being defined only by a handedness of the initial circular polarization and a
sign of the inclination angle of the beam.
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I. INTRODUCTION

The concept of the propagation of a plane wave (or a light ray associated with it)
through a homogeneous anisotropic medium (or an unbounded crystal) presented by the
Fresnel formulas [1] is a commonplace in physical optics. Transmitting obliquely to the
crystal optical axis a light ray splits into two ones — the ordinary and extraordinary rays
with orthogonal linear polarizations. However, in most real cases, we deal with a light
beam that represents a coherent bundle of rays (plane waves) with different light velocities
and directions of the electric and wave vectors. Naturally, the light beam in the crystal can
manifest new properties different from those in a separate plane wave. For example, an
axially symmetric beam in a uniaxial crystal can be converted into an astigmatic beam [2,
3] whereas the conical refraction of the beams in a biaxial crystal embeds unique singular
points (so called the diabolical points) in the beam wavefront [4]. Of even greater
dramatic case is the propagation of Gaussian [5-7] and singular beams [8] along the
optical axis of a uniaxial crystal. In this connection it should be noted that the singular
beam (or the vortex-beam) represents a wave structure containing a set of optical vortices
[9] i.e. the phase singularities of the wavefront where the field amplitude is zero while the
phase is uncertain. The optical vortex is characterized by a topological charge / equal to a
number of wavefront branches in the vicinity of the singular point. The propagation of a
singular beam in free space or a homogeneous isotropic medium obeys a simple
requirement: a total vortex topological charge does not change when propagating [10].
Specific features have scalar random 3D wave fields where the optical vortices manifest
Brownian scaling properties [11]. The most general case represents a vector light field
with a spectrum of new unexpected properties of polarization singularities considered in
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detail in the seminal work [12] by Nye. Recently Dennis [13] and Flossmann et. al. [14]
have theoretically and experimentally supplemented this complex picture with 3D
structures of randomly polarized optical fields. Generally speaking, an elliptically
polarized vortex-beam carries over a spin and orbital angular momentum [15]. The spin
angular momentum (SAM) is associated with a circular polarization of the beam field
while the orbital angular momentum (OAM) is characterized by the beam structure, in
particular, by the optical vortices imbedded in the beam wavefront. A total angular
momentum (i.e. a sum of the OAM and SAM) is conserved for any propagation direction
of the beam in free space and homogeneous media. However the above requirements get
broken in an anisotropic homogeneous medium [5-8] even for the beam transmitting along
a crystal optical axis. At the same time, Ciattoni et. al. [16] have shown that a total angular
momentum flux along the crystal optical axis is conserved. The mutual conversion of the
SAM and OAM is specified by the spin-orbit coupling [17].

When tilting a singly charged vortex-beam relative to the crystal optical axis, the
phase singularities are subjected to a radical reconstruction [18,19] in circularly polarized
components relative to those in the beam propagating along the crystal optical axis, the
vortex-beam experiencing the asymmetric splitting. We have treated this effect [18] as a
result of complex chains of dislocation reactions in each circularly polarized component
and termed it the vortex quadrefringence i.e. a splitting of the initial singly charged vortex
into four identical vortices. Dislocation reactions in the tilted splintered beam entail shifts
of the center of gravity of the beam relative to the beam axis. It should be expected that
the beam shift vanishes in the asymptotic case when a mutual overlapping of the
splintered beams is negligibly small. However, we found [18] that in the asymptotic case,
the optical vortices have a residual displacement in the orthogonally circularly polarized
component relative to that with the initial circular polarization.

The aim of the given paper is to bring to light the underlining processes that reduce to
the asymmetric splitting of the high order tilted vortex-beams and estimate the value of the
transverse shift of the beams in one of the circularly polarized components.

II. DESTRUCTION AND RECOVERY OF HIGH ORDER VORTEX-BEAMS

I1.1 The basic groups of vortex-beams
We will consider an unbounded homogeneous anisotropic medium with the only
optical axis directed along the z-axis of the referent frame x,y,z (Fig.1) that characterized

by a permittivity tensor in a diagonal form: diag &= diag(go ,50,53) , where n, = \/g and
ny = \/g being the refractive indices along a major crystallographic axes, n, > n, (see
Fig.1).We assume at first that the paraxial beam propagates along the crystal optical axis:
E(x, y,z)= E(x, y,z)exp(—ikuz), where k, =n_ k, is a wavenumber of the ordinary
beam in the crystal, &, is a wavenumber in free space.

The paraxial wave equation for the transverse component of the electric vector

~

E = exEx + eyEy (e,,e, are the unit vectors) can be written in the form [2, 8, 18]:
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(V2 —2ik,0.)E, = gV, (V,E,). (1)
where f=Ag/e;, Ae=¢g,—¢&. Let us make use of new coordinates: u =x+iy,
v =x—1iy and a new polarization basis: E+ = EX - iEy , E_ = Ex + iEy are the right
hand (RHP) and left hand (LHP) circularly polarized components of the beam.

z=0
Fig. 1. Sketch of the beam propagation in a uniaxial crystal. C is a unit vector of the
crystal optical axis.

Then the eq. (5) can be rewritten as
(40, —2ik,0.)E, =20,(0,E, +0,E ), (2a)
(40;,-2ik,0.)E.=2p0,(3,E, +0,E.). (2b)

Particular solutions to the eqs (2) can be found by means of simple substitutions:
1) the ordinary mode beam:

E! =w,0,¥,, E°=-w0Y¥,, (3)
2) the extraordinary mode beam:
Ef =w,0,%., E°= w, 0,'Y, “
The scalar function ¥ is a solution to a scalar paraxial wave equation:
(v2 -2ik,.0.)¥,, =0 5)

where k, = (n32 /n, )ko being a wavenumber of an extraordinary beam, w, is the beam

waist at the plane z =0.
A small inclination of the ordinary beam axis relative to the crystal optical axis (say,

on the y0z plane) at a small angle &, <<1 can be taken into account by a displacement
of the origin of the coordinates along the imaginary y-axis at the distance y, =i, z,
[18, 20, 21], where z, = kowé /2. The new transverse coordinates are X =X,
y=y+tia,z,, u=u—a,z,, v=v+a,z,. In this case, the paraxial ordinary beam

0’

with a Gaussian envelope tilted relative to the z-axis at the angle «, is transformed into
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the beam propagating along the z-axis but its intensity maximum is shifted at the distance
¥y, =y—a, z. The extraordinary beam is tilted at the angle &, and its y-coordinate is
shifted at the distance ¥, =iz, (z, =k, Wg /2). The transformations of the phase in
the tilted extraordinary beam are taken into account by the additional curvatures of the
wavefront stimulated by the complex shift i¢,z,. Besides, the function of the Gaussian

envelopes get an amplitude factors: exp(—ko,ezo,eaf,e / 2) . Clearly the solutions (3, 4) to

the equations (5) in the coordinates x,),z also satisfy to these equations in the

coordinates X,Y, ,,Z .

It is worth to note that the operator 0; =0, =0, —i0, acting on the generatrix
function of the beam ‘¥ in free space [22] is the operator of the birth of the vortex-beams
with a negative topological charge / <0 while the operator 0, =0, =0, +i0, is the
operator of the birth of the positively charged vortex-beams (l > O). Thus, by acting the
operators O, and O, on a generatrix functions ‘Pé”’e) in the crystal we can create the first

large group of the high order vortex-beams. As a generatrix function ‘Pé”’e) we can choose
the functions of the fundamental Gaussian beam in a homogeneous isotropic medium with
refractive indices 7, and n,, respectively:

N 2

(04
e = exp{— —kuezoeﬂ}, ©)
Go,e Woao,e , , 2

where o, , =1—-iz/z, . Thus the fields of the high order vortex-beams of the first group

V are
V(—l),((),e) — N[Vai—laulyo(o,e)’ Vf—l),(a,e) — iNlVai—laleO(o,e)’ (7)

+

where N, ,V = (— W, )l , [ >1 stands for the modulus of the vortex topological charge in the

RHP beam component. The sign (—) corresponds to the ordinary beam VD) ATl these

beams carry over optical vortices. However, this group of vortex-beams does not involve a
fundamental Gaussian beam in one of the circularly polarized components. To create such
a mode beam let us make use of eqs (2, 4) and write

G =-[8,%5) du (8)
G = + j oW du . 9)

where the sign (+) refers to the ordinary beam G') while the sign (—) is associated with
the extraordinary beam G . The G component in eq.(9) has an amplitude singularity
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at the axis: u =v =0 [8]. To avoid the amplitude uncertainty we require the only RHP
U-beam to be at the z=0 plane: U") (x,y,2=0)=0, that is
v =6"+6", v =G +GY. (10)
The equations (8)-(10) enable us to build the second large U-group of the vortex-
beams as:

U =N (G +6), UM = NI (6 +GY). (an

where N ,U = (— woy . For example, the lowest order beam with a complex amplitudes:

- ) _ 5 gl
U =) 4+ @), UE°)=—3{w§ 2. %" ~0. % +‘{’0(”)—‘{’0(e)} (12)

* uv
carries over a centered double-charged optical vortex with /=+2 in the LHP component
when propagating along the z-axis (¢, = 0). Similar to the V-group of the singular beams,

the second U-group carries over the optical vortices in each circularly polarized
(0)

N
At the same time, the RHP components of the beams of the V-group carry over the
negatively charged vortices while the vortices of the beams of the U-group have positive

component (excepting the U’ component) whose topological charges differ to two units.

topological charges. More complex singular beams V) and U with the second

radial index m can be derived from eqs (7) and (11) by means of the action of the
operator M ") = (— iz,, )m m! 0" on the initial vectors V®” and U” [8].

Our major requirement to the V-beams is also that their left hand components at the
plane z=0 wvanish: V_(_Z) (x, V,z= O) =0. It means that the vector functions

NSRS v QR v R together  with Ul = gl L glm@) gefine
unambiguously the crystal traveling beams. It permits also us to form the arbitrary beam
field E at the plane z=0 with a complex amplitude W in terms of the crystal-traveling
beams U™ and V) a5

W(x,2=0)= 3 @, VO (39,2 =0) £, U (x,3,2=0) | (13)

Im

where a,, and b,, are the expansion coefficients. In our further consideration we
restrict ourselves only to the vortex-beams with a zero radial index m=0. Besides, the
above requirement enables us to obtain the relation between the angles «, and o, [18]:

ka’z =ka’z

0700 eeTe?

I1.2 Structural transformations in the tilted vortex-beams
The most intriguing feature of the tilted beams (the beams with complex variable

y=y+ia,z,) of the V- and U-groups is that the optical vortex does not follow the
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beam axis. For example, the ordinary vortex beams of the V-group derived from eqs (6, 7)
have the RHP component in the form

2 =2 2
) ] ;exp{—x ;Ly —koaozo}
Do) _ {x —i(y+ laozo)} wo, 2

h
w,0o, o

o

(14)

The Gaussian envelope has a maximum at the point x =0, y = ¢,z while the vortex
is positioned at the point: y =0, x=—«,z,. The vortex leaves the axis when tilting the
beam. In order to force the vortex to follow the beam it is necessary to construct a new

beam
2 =2 2
| lexp{_xjy_koaozo}
rene | x=ily-a,z) wo, "2
v W,O, c

o

(15)
in terms of the crystal-traveling beams. Since

_ ! : . . !
[x—z(y—aoz)} o) :[x—z(y—aozﬂaozo —zaozo)} @) _
w,O, WO,

0

.( + . ) /

x—i(y+ia,z,) a,z, 0

{ - } gl
W,0, W,

consequently, the equation (15) is a solution to the paraxial wave equation or otherwise

L (1 az )" x—i(y+ia,z,) P
)

=0\ P W, W0,
i.e. the RHP component of the tilted beam represents a superposition of elementary beams
with a complex y variable. By the similar way we can write the beam components

V! M) e J'r(’)’(e). Then with the help of the expressions (7) and (11) we build the

LHP components o) pinle) Ui(l)’(”), Ui(])’(e) and the fields V and U of the
crystal-traveling beams. The new beam field V! -1 comprises not only the field of the first
V-group but also the beam of the second U-group (see the term with p=0 in eq. (16))
()

by using expressions (7) and (11) we can write a total rule for constructing the tilted
vortex beams in a uniaxial crystal.

. ! : !
e _ {x —ily-a,2) ‘“uz)} o) 4 {M} v (1£0) (17)

n
WO Go WO Ge

whereas the beams U’ are defined only by the elementary beams of the U-group. Thus,

! I-p !
) _N,Vz( ! j(——“ozo j ort (oW -0, ¥y )+ (—a—ZJ U (1#0)(18)

Wo Wo
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+
WO G() WO Ge

+ily-a,)| +ily-a.z)]
U(,):{x Yy OKUZ}\P(SO)_F[X ny OKer|\P(§e), (19)

I-p
LI\ az
uv =NV ( J(—J o7(GY) +G). (20)
2, ( )

Wo
Without loss of generality, for our theoretical analysis, we choose the initial vortex
beams of the V- and U-groups with topological charges /; =-3 and [, =43,
respectively, in the RHP component at the z=0 plane. As the vortex beam spreads along
the crystal provided that &, = const (or when changing the angle «, but z = const), the

beam field experiences inner reconstruction. The essence of such a structural
transformation illustrates Fig.2 and Fig.3.

Fig. 2. Splintering of the Vf_3) and U 53) beam components at the inclination angle

a,=10° and w, =30um. The upper figure is the longitudinal section of the Vf‘3 )
beam component.

Typical patterns of the intensity distributions for different crystal lengths z at the
given inclination angle ¢, for the LHP components V_(’B) and U £3) are shown in Fig.2
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while the vortex trajectories: Re [VH) (x, v,z =const, a)] =0,

Im[V_H) (x, v,z = const,a)} =0 in the space {x,y,au} are shown in Fig.3.

beam with

Fig. 3. The key fragments of the vortex trajectories in the y
w, =50 um inthe LiNbO, crystal, z=2cm.

The reconstruction process has three key fragments: 1) the range of the crystal
lengths near o, =0, 2) the range near &, =¢,, (or z=z,,) and 3) the range near

a,=a, (or z=z, ). The first initial range &/, = 0 is characterized by a transition of the
beam from the symmetric state when ¢, =0 into an asymmetric one when ¢, # 0. The
LHP component of the V_H) beam has the topological charges: [, =—1(the charge of
the U beam is [, =5)for o, =0)[8].

However, even a very small beam inclination (ao * 0) destroys fairly rapidly such a

vortex state and a total topological charge in the LHP component goes to the charge in the
right hand component. This beam reconstruction is accompanied by dislocation reaction
shown in Fig.3a. Near the beam axis, two pairs of optical vortices are born. Two
negatively charged vortices follow the beam axis alongside with the initial vortex (that
results ultimately in recovering the high-order optical vortex) while another pair of the
positively charged vortices leaves the beam (red line and dots crimson trajectories at the
figures; the blue dash-and-dot color line indicates the initial vortex). When enlarging the

angle «,, the intense dislocation reactions get started. There are two types of the
trajectories in the process: the major trunk and the transverse branches (the brick-red dash

lines). The positions of the birth and annihilation events are indicated by the green circlets
and dark-red ovals, respectively. These two types of the trajectories are not intersected up

to the critical angle «, = ¢, , (or the critical crystal length z =z, , ). The processes in the
intermediate range are described at length both in the terms of the scalar [18] and the

vector [19, 23] singularities. Note that although a simple model of two linearly polarized
beams with centered optical vortices presented in the papers [19, 23] describes fairly good

the processes in the intermediate range of the inclination angles «,, it dos not involve the
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degenerate case ¢, =0 and, consequently, could not take into account the process of the
asymmetric recovery of the high-order optical vortices (or polarization singularities) that
we will consider later on.

The critical angle o, = ¢«,,, (or z=z, , in Fig.2) corresponds to splitting the beam
into two ones: ordinary and extraordinary beams. Noteworthy that not all beams can be
splintered but only those that can overcome the border o, =¢,, (or z=z,,) for the
beam and crystal parameters (so-called the indistinguishability border [24]). In the vicinity
of the plane ¢, = «,,; (or z=z,, ) three transverse vortex trajectories are bent shaping the
core of the second segregated vortex-beam (see Fig.3b). From now on the vortices on
these trajectories in the both splintered beams leave the zone of the dislocation reactions
transmitting along screw-like lines without dislocation reactions. However, the beam
deformation caused by the further inclination of the beam stimulates pressing one of the
vortex trajectory out of the major trunk of the LHP polarized component (see Fig.3c)
while all vortices in the RHP component propagate inside the same trunk. Such an
unequal asymptotic behavior of RHP and LHP components derived from the solution to
the parabolic wave equation (1) found a simple explanation in terms of the conservation
law of the angular momentum flux that will be considered in the next Section.

Let us estimate the asymptotic behavior of the vortices in the Vf_l) and V_H)

components. We will assume that the ordinary and extraordinary beams in this component
are completely split and the beams do not interfere with each other, i.e.

a,z/wy,a,z/ w, >>1 . Besides, we will treat the partial beam near its axis so that

. ’
‘x/Zo’e |\y-a,.2)/Z,,|<<l,and Z,, =z+iz,,, y,,=V—-Q,, 2,
2 ' q
1 1 ’ r, y
~ _ q 0,e . 0,e
2 o 2 ~ 2 Z( 1) 2 22 +2l Z 4
X +(y+ laoZu) o (au eZu e) q=0 ao,e o,e ao,e o0,e
— . P )i . P
u I ., —1 .
(:j - 1——Z (x+zyo’e) XZ —Z (x—zyo,e),
v o,e ao,e o0,e p=0 ao,e 0,e

where ro'i =x+ y;i,. In the above equations, we restricted ourselves to the /-th term in
the power series associated with a topological charge [ of the considered vortex-beam.
Besides, the value 7> = x* + (y +ia,z, )2 does not depends on the 0 — or e —indices in
the complex beam because «,z, = «,z,. However, it is necessary to take into account
these indices in the radius r()"e when considering each partial beam separately. After a

tedious but straightforward algebra in the expressions (23) and (24) we come to the

asymptotic expressions for the VJE_I)’(O) and V_(_l)’(o) components:
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. l
D o [—fv;’/yz ’ ] w7, 1)
0 0
RNE
V_(fl)"’ oc AL 47 Zo 2! +x—-iy) ‘Péo). (22)
wyz/z, wyz \ e, k,

Similarly we can obtain the asymptotic expressions for the extraordinary VJr(_l)’(e)
and Vf(fl)’(e) partial beams Thus, the V+' 1) component has two branches of the ordinary

(-1)

also two branches. However, the vortices have a complex structure. They do not gather

together at the axis like those in the ordinary beam. The vortices of the /-1 order are

positioned at the axes of the beams: xl(") =0, yl(”) =,z and xl(e) =0, yl(e) =a,z.The

and extraordinary beams with centered /-order optical vortices. The V'™ component has

second pair of vortices with unit topological charges is shifted along the x-axis at the
distance Ax, =-2// (Ocuku) relative to their neighbors in the J/, beam component:
xg(') =21/(e,k, ), yg") =,z and x\¢) = =21 ek, ), yge) = a,z . The magnitude of
the transversal vortex shift Ax increase linearly with growing the vortex topological
charge / and does not depend on the crystal length z. It means that the extraordinary
beam do not recover its initial structure at any crystal length. It lead to a drastic
consequence.

Indeed, in frameworks of the model of two linearly polarized tilted beams [19, 23]
with centered optical vortices, the superposition of the circularly polarized beam
components in the asymptotic case must form a total beam with a uniformly distributed
linear polarization over cross-sections of the splintered partial beams, the linear
polarizations being orthogonal to each other in these beams. However, a complex vortex
structure in each polarized component of a total wave field (17-20) derived from the
paraxial wave equation (1) results in a non-uniformly polarized field distribution in the
vicinity of the beam core. This situation is shown in Fig.4.

The polarization distribution represents a set of polarization ellipses on the
background of the polarization ellipticity Q =+b/a (a and b is the ellipse axes). The
solid lines (streamlines) are oriented along the major axes of the ellipses that are
characterized by inclination angle i to the x-axis [12]. The streamlines trace the
characteristic pattern in the vicinity of the C-points — the points of the polarization
singularity. One of the circularly polarized components vanishes at this point. In fact, the
C-point characterizes the vortex position in one of the field components. There are three
types of patterns traced by the streamlines: the star, the lemon and the monstar. The star is
characterized by the topological index v =—1/2 whereas the lemon and the monstar have
the same topological indices v =+1/2. The picture in Fig.4b has six characteristic
patterns: three stars and three lemons for the one of the beams of the V-group at the
inclination angle o, = 8°. As the angle «, increases, three lemons and two stars draw

together forming the pattern with a topological index
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v=—1/2-1/2+1/24+1/2+1/2=+1/2 that we classify as a degenerated lemon (see
Fig. 4c). This polarization singularity corresponds to the position of the double negatively

charged optical vortex in the V_(3)component and the triple negatively charged vortex in

the V+(73) component. The star shifted relative to the lemon corresponds to the singly

charged vortex in the V_(73) component. The computer simulation showed that these
polarization singularities are always separated at any crystal lengths.

Fig. 4. Polarization distribution; n, =23, n, =22, z=2cm, w, =30um; (a)
the intensity distribution in the vicinity of the V) beam core, (b), (¢) polarization
singularities for V) and (d), (e) u® beams, (f) the intensity profile in the vicinity of
the V) beam.

The absolutely other situation is observed for the polarization singularities in the U-
beam group. The fact is that in the case of the U £3) beam, two vortices in the orthogonal
component leave the vortex-beam at the very beginning of the dislocation reactions
a, =0 so that ultimately the splintered beams recover also a total topological charge
[ =3 for a, > «,,. However, the vortices do not gather together but form asymmetric
composition shifted along the x-axis. The picture in Fig. 4d represents also a complex
combination of three lemons and three stars at the angle o, =8°. When further
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increasing the angle «,, three stars gather together at the point x =0, ' =0 forming a

degenerated polarization singularity with a topological index v =-3/2 (Fig. 4e).
However, the rest three lemons form something like an asymmetric vortex-cloud shifted
along the x-axis in the vicinity of the central point. Such a vortex structure does not

change while growing the crystal length. The growth of the topological charge |l| of the

initial beam entails a linear displacement of the lateral C points along the x-axis for both
the V- and U-groups of the beams.

Before studying the influence of the handedness of a circular polarization and a sign
of the vortex topological charge on the transverse shift of optical vortices, let us note that
the beam fields presented by the expressions (17)-(20) are not the only ones. We can
construct new groups of fields with the help of changing the variable of differentiation and
integration from # to v ineqs (11), (15) and (12), (13). Then the equations (11) and (15)
can be rewritten in the form:

y(eeo — NV oHg gloe) V_“( = N/ Wl (23)
U =nNYe (_ GY), T =N"a! (c_;_ +GY), (@4
where G” +J-8 ‘P” dv, G} I@

Besides, our requlrement is now: the RHP component of the initial field vanishes at
the z=0 plane: ¥, (x,y,z=0)=0, U, (x,y,z=0)=0. Then, the beam components get
the form:

- NIVZ[ ! j(“_zj or x (0, - au\yge))+(%j T (1+0)(25)
Wo

=P\ W
o _[xri-a2)] o [xril-as)| o
g = | TV ZEE) gl | TTRY T EE) gl (4 ) (26)
w0, WO,
]
: p=0\ P Wo o '
_ I . !
T = {M} W) ¢ {M} ), (28)
W,0, WoO,

The LHP component of the V-group of the initial beams carries over positively
charged vortices whiles the U-group — negatively charged ones. Comparing with the field
(17)-(20) we can infer that the handedness of the circular polarization of the beams and
the vortex topological charges are tightly bound with each other in the crystal-traveling
beams. Computer simulation showed that the directions of the vortex transversal shift both
in V- and U-groups are exclusively defined by the handedness of the initial circular
polarization. Otherwise, the vortex transversal shift has the same direction for the J-beam
group with the RHP and the / <0 topological charge and the U-beam group with the
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RHP and the / > 0 topological charge (just as for the V -beam group with the LHP and

I > 0and the U -beam group with the LHP and / < 0).

Linearly polarized vortex-beams represent superposition of the circularly polarized
ones: F)({’) =V 1T and F" =—i(V"" —U""). Naturally, these vortex-beams
are non-uniformly polarized near the beam core in the asymptotic case. Fig. 5 illustrates

behavior of the polarization singularities inside the core of the vortex beam F)((_” after

splitting. At the inclination angle o, =7°, three lemons and three stars are grouped
around the beam axis. As the angle ¢, increases, two stars flow together forming a

degenerated star at the beam axis y'=0,x=0 at the angle a, =10° while the

asymmetric cloud of three lemons are shifted to the left and one star is shifted to the right.
Thus, a magnitude of the relative shift between the polarization singularities is doubled. In
the RHP components, we will observe the cloud of optical vortices shifted to the left
whereas the LHP component comprises the centered double-charged vortex and one
singly-charged vortex shifted to the right.

Fig. 5. Polarization singularities inside the core of the F)(f ) beam: z=2 cm, wo=30

um.

I1.3 The experiment

A series of nontrivial theoretical results described above needs an experimental basis.
First of all, this relates to a different behavior of RHP and LHP components in the
splintered beams that results in a non-uniformly polarized field distribution in the vicinity
of the beam core. It is important to note that the polarization heterogeneity of the paraxial
beams split by the uniaxial crystal is inherent in all singular beams irrespective of a
magnitude of their topological charges. Although the area of the polarization
inhomogeneity increases when growing the vortex topological charge /, light intensity
decreases very quickly in this area. Besides, a high-order optical vortex embedded in the
beam is of an unstable structure that can be destroyed by a very small external
perturbation [25]. Naturally, experimental measurements with off-axis high order vortex-
beams transmitting through a series of boundary faces of the optical elements in the real
experimental set-up are accompanied by a very high experimental error. As a result, we
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restricted ourselves to the experiments with singly charged vortex-beams. In the article
[18], we have experimentally considered the vortex-beam behavior in a uniaxial crystal in
the vicinity of the indistinguishability boarder &, = «r,,, (or z =z, ,) [24]. In the given
section, we will focus our attention on the beam structure far from this border when the
beams are separated and their mutual interference vanishes. We will concentrate ourselves
on the transformations of the C-lines in the vicinity of the beam core.

The sketch of the experimental set-up is shown in Fig.6. The non-singular beam from

the Ne-Ne laser (/1 =0.6328u m) is transformed into a vortex-beam with a topological
charge / ==+1 by a computer generated hologram (Tr). Diffraction orders after the
computer generated hologram are clearing by the diaphragm (D). The polarizer (Pol) and
the quarter-wave retarder (A/4) insert a circular polarization into the beam. The
handedness of the circular polarization is defined by the direction of the axes of the A/4
plate and can be converted into opposite one by a simple rotation of the A/4 plate axes at

the angle 90°. Further the beam is focused by a lens (L) with the focal length f =5cm

into the LiNbO; crystal at the angle «,, to the crystal optical axis C (the crystal length is
about z=2 cm).

Fig. 6. The sketch of the experimental set-up: (He-Ne) — laser, (Tr) — computer-
generated hologram, (Pol) — polarizer, A/4 - quarter-wave retarder, (L) — lens with =5
cm, (LiNbO;) — crystal, (D)- diaphragm, (MO) — 20" microobjective; (CCD) —CCD
camera.

The crystal is positioned on a rotary table that enables us to rotate the crystal with the

angle precision about 0.03°. The beam after the crystal is collimated by the diaphragm
(D) and 20" microobjective (MO). After passing through a quarter-wave retarder and the
polarizer, the beam is detected by the CCD camera. The optical elements positioned after
the crystal are mounted on the special 3D-optical table that permits us to tune up the beam
image at the CCD camera after rotating the crystal. We could measure the specific Stokes
parameters at each pixel of the beam image at the CCD camera in accordance with a
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standard technique [7, 18]. The spatial resolution in the beam image was about 1.5 ym.
The position of the origin on the x-y plane is defined as a center of gravity of the beam at
the CCD camera plane for each angle ¢, to within 1.7 zm provided that the initial beam
is a linearly polarized. The described above technique does not permit us to measure a
magnitude of the asymptotic transverse shift of the vortices Ax, (see Sections II).
Nevertheless, we can study experimentally major features of the fine polarization

structure of the beam core and bring to light major tendencies of the vortex-beam behavior
in each circularly polarized component when tilting the beam. We measured the positions
x and y of the C-points for each angle ¢, within to 1.54m on the base of standard
method [7, 18]. We started to measure the C-point positions at the beam cross-section
when the light intensity between the beams was 10 times as small as the intensity at the
beam maximum. This corresponds to a rather well splitting of the partial beams. A typical
map of the polarization distribution is shown in Fig.7.

Fig. 7. Map of the polarization distribution in the vicinity of the beam core with the
initial RHP polarization and / = —1.

We can see here standard patterns of the star and the lemon around the C-points.
When tilting the beam, the C-points start to rotate and a distance between them changes.

Their positions trace a complex trajectories in the space: x,),c,,. At first, we plotted

trajectories traced by the lemon and the star inside the core of the ordinary singular beam
with a right hand circular polarization and a negative topological charge [/ = —1 at the
input crystal face shown in Fig.8 (the lower partial beam in the Fig.6). The star is
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associated with a vortex in the RHP component whereas the lemon corresponds to the
vortex in the LHP component. They move along spiral-like trajectories. The radii of their
rotation decrease gradually. Note that the handedness of the C-line rotations is the same.
(However, the handedness of both trajectories changes its sign in the extraordinary beams

propagating at the angle ¢, (the upper partial beam in the Fig.6)). The star is rotated
around the ¢, axis while the axis of rotation of the lemon is asymptotically approach to

the axis of rotation of the star. After the angle &, ~12°, the trajectories draw together at

the distance lesser than 2 um and are experimentally perceived as one line. When

changing a sign of the initial circular polarization to the opposite one, the star and the
lemon in Fig. 7 are transposed. The lemon is moved now along a spiral-like trajectory
rotating around the ¢, axis. The trajectory of the star is shifted to the positive direction of
the x-axis approaching gradually to the trajectory of the lemon. The switching of a sign of
the initial vortex to the opposite one does not change essentially the form of the C-lines.
Thus, the direction of the transverse shift of the vortices is exceptionally defined by a
handedness of the initial circular polarization. At the other hand, the direction of the
transverse shift of the vortices changes to the opposite one when changing the sign of the

inclination angle «, .

Fig. 8. C-lines for the RHP initial beam with /=-1, w, *50 um, z=2cm.

For comparison, we introduce theoretical trajectories in Fig.9 plotted for much the
same parameters of the beam and the crystal. (The equation for the C-lines is derived from
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the requirement: the first and the second specific Stokes parameters vanish or
s,(x,y,z,a,)=E.E'+E'E =0, s,(x,y,2,a,)= i(E+Ef - EiE_): 0). The

theoretical C-lines for the V'~ -beam in Fig.9 also have all major features of the
experimentally observed trajectories and are in a good qualitative agreement with the
experimental curves in Fig.8. The behavior of the lemon and the star in the initially x-
linearly polarized beam F is shown in Fig.10. The C-lines have also a spiral-like form.
However, both trajectories are symmetrically shifted along the positive and negative
directions of the x-axis. In contrast to the circularly polarized V"-beam, the tilted linearly
polarized F, beam has a vanishingly small intensity of the orthogonal component. As a
result, the interference between the ordinary and extraordinary beams is experimentally
observed only for very small inclination angles. The C-lines of the linearly polarized F,
beam oscillates much slower and approach to each other very quickly. Nevertheless, we
observe distinctly two trajectories drawing together with relatively slow oscillations. After

the angle «,, =77, the trajectories are experimentally undistinguished and we cannot

judge about their asymptotic behavior. Comparison of the curves in Fig.9 for the F, and
Fig.10 shows their good qualitative agreement.

Fig. 9. A computer simulation of the C-line behavior in the V” and L, beams, [ =1.

Fig. 10. C-lines in the L-beam with: [ =—1, w, ® 5S0um, z=2cm.
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The vortex transverse shift in the singular beams stimulates inevitably the transverse
shift of the circularly polarized beam components and distortion of their cross-sections.

IIT THE TRANSVERSE SHIFT, ANGULAR MOMENTUM AND DEFORMATION
OF THE BEAM CROSS-SECTION

II1.1 The angular momentum

Generally speaking, the conservation law of the angular momentum of light in a
simple form as a sum of the SAM and OAM for homogeneous isotropic media [15]
cannot be employed in an anisotropic medium because the anisotropic crystal has
sources and sinks of the angular momentum of light [26]. It means that the angular
momentum of light can be coupled with the angular momentum of the medium.
Nevertheless, Ciattoni et al. [16] showed that, in the paraxial approximation, the
conservation law can be written for the component of the total angular momentum flux
along the optical axis of the uniaxial crystal where the medium is rotationally invariant
and the coupling between the angular momentum of the medium and light vanishes. The
balance equation can be written in the form:

S, (2)+L(2)=1, -1 +L+1) =l+0, (29)
where S and L_ stand for the spin and orbital angular momenta, respectively, /, and
I are the dimensionless intensities of the RHP and LHP components, L(;) and L(Z’)

are the OAM of the RHP and LHP components, [/ and o are the topological charge and
handedness of the beam at the z=0 plane. Although the spin and orbital components of
the angular momentum flux can change their magnitudes when transmitting the beam,
the spin-orbit coupling [16, 17] forces their sum to remain constant. The beam
propagation along the crystal is accompanied by its depolarization, i.e. decreasing of the
SAM. The depolarization process in turn “switches on” the spin-orbit coupling so that
the OAM get transformed.

Polarization state in the vortex-beam can be considered on the base of the Stokes
parameters:

S,=3=3.+3, 8, = deTdy(E+Ef+E:E_), (30)

—00 —0

s, :iT dedy(Eﬁ* _EE). S, = deTdy(Eﬁj ~E'E)=3.-3, (1)

here the symbol () stands for a complex conjugation. 3, are the normalized intensities

of RHP and LHP components, respectively. The magnitude
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SZ:S—::szh—I_ (32)

) N
describes the SAM of the vortex-beam. The polarization degree can be presented as

po VS +Si+S 33)

~

3
Fig.11 demonstrates behavior of the SAM for the U?” and V*® beams. The
oscillations of the SAM in the V® beam die down periodically before vanishing while
the oscillations of the vortex-free U beam decrease monotonically. In both cases the
oscillations have envelopes in the form of the polarization degree P.

Fig. 11. S, (0{0) and P(ao) of the beam U™ and t V™ beams, z=2 cm.

The OAM of the paraxial beam L_ is calculated by mean of the expression:
L, =—£J.dx.|‘dy E” (xayE—yﬁxE), (34)
S —00 —o0

It can be presented as a sum of the OAM of the RHP and LHP beam components
L. =L'+L,. The curves shown in Fig. 12 describe the OAM evolution for the U,

U® and V™ beams The U® and V™ beams have opposite signs of the topological
charges /=43 and [=-3, respectively, and the same handedness of the circular

polarization o =+1 at the initial plane z=0. All the curves Lz(ao) oscillate

synchronically with the curves S, (0{0) (see Fig. 11).
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Fig. 12. L, (ao) for the U?, U® and V®® beams; w, =50um, z=2 cm.

However, the sections of the curves in Fig.11 where the SAM increases, corresponds
to the section of the curves in Fig. 12 where the OAM decreases and vice versa. At the
first sight, it seems that the sum of the topological charge and handedness at the initial

plane z=0 and at the asymptotic case z — o must be the same: [, +o, =/, . Buta

asym

simple estimation shows invalidity of such assumption: /, +o,, #1,,,, . Even the vortex-

free (I =0) beam U with a zero initial OAM L_ (Z = O) =0 gets the asymptotic orbital

(asymp)
z

angular momentum =+1 that has nothing to do with the vortex topological charge

[ . At the same time, the optical vortices are not the only reason that can change the OAM.
Considerable contribution to the OAM is also made by the astigmatic transformations [15]
and the transverse shift of the center of gravity of the beam as a whole.

II1.2 The transverse shift

The brightest example of interrelation between the transverse shift and AM in optical
processes is the Fedorov-Imbert effect [27- 32 | — the lateral displacement of the beam
when refracting or reflecting it at the interface of two homogeneous isotropic media. The
basic part in this phenomenon plays the spin-orbit coupling. The transverse shift manifest
itself also in the spin Hall effect: the splitting of a linearly polarized beam into two
circularly polarized ones [33-35] and in the optical Magnus effect: rotation of the
trajectory of a circularly polarized ray in an optical fiber [36, 37]. The singular beams
bearing optical vortices enhance noticeably the effect owning to an additional orbital
angular momentum associated with the optical vortices [38-40]. Moreover, the direction
of the beam shift at the boundary face is defined now not only by the handedness of the
circular polarization but also by the sign of the vortex topological charge. The
imprescriptible element of the considered above processes is inhomogeneity of the
medium. In this Section, we will concentrate our attention on the transverse shift of the
beam in the unbounded homogeneous but anisotropic medium.
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We calculated the positions of the center of gravity of the beam on the base of the
standard expressions:
1

xe =%fdxfdy O R - il LS L ESTE ED

The chains of the dislocation reactions in the tilted vortex-beams force the center of
gravity trace intricate space trajectories for each of the circularly polarized components.
The typical trajectories are shown in Fig. 13 for the V' vortex-beam. The amplitude of
vibrations of the trajectory depends on the crystal length z and the inclination angle «, .

The amplitude has large value inside the angle range from o, =0 to the

indistinguishability border &, = «,,, . In the vicinity of the value &, = «,, , the vibrations

die down because a part of vortices that take place in the reconstruction of the beam core,
leaves the area of dislocation reactions. Then the vibrations are resumed again but with
essentially smaller amplitude while their frequency increase very much. Finally, the

vibrations fade away at the relatively large angles ¢, (or the crystal length z). However,
we observe the residual displacement one of the beams. The position of the center of
gravity of the Vf_S) component is shifted along the x-axis at the distance:
Ax™ =-2/(k a,) while the shift on the orthogonal plane vanishes Ay~ = 0. At the same

time, the center of gravity of the total beam V™ is shifted only at a half of this distance:
Ax, = Ax” /2 while for all that the V+(73) component is not shifted. The circularly

polarized components of the F, beam with the initial linear polarization directed along

the x-axis and the vortex topological charge / are shifted in opposite directions so that in
the asymptotic case the transverse shift between circularly polarized components is

doubled AxY) = 4/(k ).

Fig. 13. The trajectories of the center of gravity of the V™ beam; z=2 cm,
w, =50um.
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It is noteworthy to remark that the magnitudes of the asymptotic transverse shifts
Ax, of the center of gravity for the circularly polarized components of the V,U,V ,U

beams are the same for different magnitudes of the initial vortex topological charges /
although the transverse shift of the vortices in these components is proportional to the
vortex topological charge /. This result can be independently obtained from the equation
(29) for the angular momentum flux.

Let us rewrite the conservation law (29) in the alternative form bound with the
evolution of the center of gravity of the beam [29]:

(I'L,><kL,)Z+(I+—1_+1+l++1_l_)];€Z = const , (36)

where r, is the radius vector of the center of gravity, k_ stands for the z-component of the

wave vector of the beam associated with the center of gravity, /. and / are the vortex
topological charges in the RHP and LHP components, respectively. Since the inclination
angle is small we can assume that k /k~1. The first term in eq. (36) is

(r(, xK, )Z =—ka,Ax, in the referent frame shown in Fig.1. The sum of the SAM and

OAM at the initial plane z=0 is equal to the asymptotic AM flux at the z —> o, i.¢

1 1
[+0=—I+—I —ka,Ax,. However, the vortex topological charges in the RHP and
2 2

LHP components equal each other /, =/ =/ and the beam is depolarized (L = 17) in

the asymptotic case so that the transverse shift: Ax, =—o/k «, is the same for all vortex

beams (including the Gaussian beam) and does not depend on the vortex topological
charge. The above result derived from the conservation law (36) coincides with the

asymptotic value of the transverse shift Ax, in Fig. 13 obtained from the solution of the

paraxial wave equation (1).

Thus, the asymmetric splitting and the transverse shift of the tilted vortex-beams in a
uniaxial crystal is a consequence of the conservation law for the total angular momentum
flux along the crystal optical axis and manifests itself as a joint action of the dislocation
reactions in the circularly polarized components, the beam depolarization and the spin-
orbit coupling.

II1.3 The deformation of the beam cross-section
The asymmetric vortex destruction and recovery in the paraxial beam considered in

Sec. II causes not only the transverse shift but also distortion of a circular symmetry of
the beam cross-section. Generally speaking, a uniaxial crystal deforms the initially
circular cross-section of the paraxial extraordinary beam when propagating
perpendicular to the crystal optical axis [41] even without taking into account the vortex
structure of the beam. Complex behavior of such deformation in tilted paraxial beams
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was remarked also in the article [3]. A circularly polarized beam propagating along the
crystal optical axis does not experience an elliptical deformation. At the same time, a
linearly polarized Laguerre-Gaussian beam in this case undergoes a relatively strong
deformation, its magnitude increasing as the beam propagates along the crystal [42].
Contribution of the transverse shift to the beam deformation is of the object of a special
investigation. However, in the given Section we will consider only some features of
such a complex process.

The magnitude of the cross-section deformation can be estimated by means of the
mean square width of the paraxial beam (see, e.g., [41]):

EY[, (37)

Wf((o,z,ao,l):} jdxj-dy’(xcosgwry’singo)z
3, 2

where ¢ is the azimuthal angle in the referent frame x0)'. We assume that the

ordinary and extraordinary beams are separated in the asymptotic case and take into
account only the field of the ordinary beam both in RHP and LHP beam components.

The expression (37) shows that the mean square width W, =, Wf is a periodical

function of the angle ¢ with a period 27 . It oscillates around the value:

— 1%
W, = ;J-W/Wf d@ . The deformation D relative to the asymptotic transverse shift Ax,
0

max

can be defined as D(Z,(lo,l):(W —W)/AXT. The curve D(z) shown in Fig. 14
illustrates deformation of the cross-section of the U - and F' —beam components along
the crystal length z. The U -beam deformation changes very slowly along the crystal in

the LHP U£3 ) component and its magnitude is only D = 0.02 at the crystal length
z = 0.4m .The RHP component Uf) does not experience any deformation. Absolutely

other situation is observed in the circularly polarized components F +(3) and F_(3) of the
linearly polarized F-beams. The cross-sections of the linearly polarized beams are
distorted even for the on-axis beams o, =0 [42] for the zero transverse shift. When
tilting the beam this effect is enhanced. However, the contribution of the transverse shift
Ax, to the deformation process, on our opinion, is negligible and such a deformation is

inherent in all linearly polarized beams in the crystal [42].
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Fig. 14. Deformation D of the U@, F™) and F_(_S) beam components as a

+

functions of the crystal length z: o, =10°, w, =50 um.

CONCLUSIONS

We have discussed the destruction and recovery of high order paraxial vortex-beams
in the unbounded medium of a uniaxial crystal when the beam propagates at a small angle
to the crystal optical axis. We paid a special attention to the transverse shift of the beam
induced by the homogeneous anisotropic medium. We have brought to light that three
optical processes underline the transverse shift of the crystal traveling beam: dislocation
reactions in the circularly polarized components, the beam depolarization and the spin-
orbit coupling. It has been shown that an inclination of the beam relative to the crystal
optical axis is tightly connected with a global reconstruction of the vortex structure. For
example, a RHP singular beam bearing an optical vortex with a topological charge equal
to -/ at the crystal input stimulates appearance of the LHP singular beam with a
topological charge —/+2 when propagating along the crystal optical axis. When tilting the
beam the LHP component of the beam loses two positively charged optical vortices while
the RHP component keeps its former vortex composition. At the first glance it seems that
both circularly polarized components carries over now identical optical vortices. However,
we have shown that a fine structure of the beam core in the RHP and LHP components is
different. All optical vortices gather together at the axis of the RHP component forming
the /-charged optical vortex. At the same time, only /-7 vortices gather together at the axis
of the LHP component while one singly charged vortex is shifted along the direction
perpendicular to the inclination plane of the beam. Besides, the beam is depolarized.
These processes break the inner matching of the SAM and the OAM bound with the
vortex topological charge. Such mismatching is removed by the spin-orbit coupling owing
to the transverse shift of the LPH beam component. The transverse shift does not depend
on a sign and magnitude of the vortex topological charge / in contrast to that in the
Fedorov-Imbert effect [39]. However, the shift changes its direction to the opposite one
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when switching the handedness of the initial circular polarization and changing a sign of
the inclination angle «, . In the initially linearly polarized beam, both circularly polarized

components experience the transverse shift in opposite directions. This effect can be
treated as the beam quadrefringence [18] in a uniaxial, homogeneous anisotropic medium.
The first two beams is a result of the splitting of the total tilted beam into the linearly
polarized ordinary and extraordinary ones. The appearance of the second two beams
originates from the splitting of the linearly polarized beams into the circularly polarized
components caused by the transverse shift. But such a transverse shift is a very small
(about a half of the wavelength) and the effect is experimentally perceived as an ordinary
beam birefringence. We have also analyzed the deformation of the beam cross-section
caused by the transverse shift and revealed that deviations of the mean square width of the
beam cross-section are vanishingly small.
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®aneeBa T.A. YorupuszajioMyleHHsI BHXPOBHX NYYKIiB Yy /BOJIy4e3aJOMJIIOIOYHX KpHCTajIax /
T.A. ®aneeBa, O.®. Pudacs, O.B. Boasip / Bueni 3anucku TaBpiiicbKOro Har[ioHalIbHOTO YHIBEPCHTETY
im. B.1. Bepnancekoro. Cepist: ®izuko-matemarnyni Hayku. — 2010. — T. 23(62), Ne 1. Y. I. — C. 30-56.

Mu 3HaHIIIM acHMETPUYHE PO3IICIUICHHS MUPKYIISIPHO MOJSIPH30BaHUX BUXPOBHX MYYKiB BUIOTO IOPSIIIKY B
OJTHOBICHOBOMY KpHCTaJli. BUXpOBHIil ITy4OK 3 TONMOJIOTIYHUM 3apsI0M L PO3IMIEILIIOETHCS Ha ITyYOK 3 3apsiioM
BUXOPY L-I, IO POCIOBCIOJUKYETHCSI B3/IOBXK HANPSIMKY PO3IOBCIO/DKEHHS MEPBICHOTO ITy4Ky, Ta OJAWH
OITUYHUH BUXODP, 3MILIEHUH Y HANPSAMKY MEPIECHINKYIAPHOMY IUIOLINHI Haxmiy my4ky. [IpuanHOIO TaKoro
3MiLIEHHS BUXOPY € OOKOBHMIi 3CyB HapLialbHOrO My4ka. MU po3risaaeMo eekt OOKOBOTo 3CyBY SIK 3 TOUKH
30py 3aKOHY 30epeKeHHs MMOTOKY KYTOBOTO MOMEHTY, Tak i Ha 0a3i pillleHHs MapakCialbHOrO XBUILOBOTO
piBHSHHA. MU NoKa3any, 110 TONEPeYHUil 3CyB IyuKa, Mic/is NPOXOMKEHHS KpHCTalla HE 3aJeXHUTh Hi Bif
BEJIMYMHY, Hi BiJ{ 3HAKy TOIOJIOTIYHOTO 3apsy ONTHYHOTO BHUXOpPY, Ta BH3HAYAIOTHCS TUIBKH IEPBICHOIO
LOUPKYISIPHOIO TIOJIPU3ALIIEI0 H KyTOM HAXMITy IMydKy.

Kniouogi cnosa: omHOBICKOBHIT KpUCTaJl, JIa3epHE BUIIPOMIHIOBAHHS, TONOJOTIYHMI 3apsijt, ONTUYHHUN BUXOD,
CTaH NOJIpH3alii, MoIIpHu3aIiifHa CHHTYJISPHICTS.

®aneeBa T.A. YerbipenpesioMiieHHe BHUXPEBBIX IMYYKOB B JABYJIyYeNnpeJOMJISIOIIUX KPUCTAJLIAX /
T.A. ®ageeBa, A.D. Peidack, A.B. BoJsip // Yuensie 3ancku TaBpu4ecKoro HallMOHAIBHOTO YHUBEPCUTETA
um. B.W. Bepraackoro. Cepust: ®uznko-matematuyeckue Hayku. — 2010. — T. 23(62), Ne 1. Y. I. — C. 30-56.
Mpbl Halu acCHMETPUYHOE pacIielUIeHHe MUPKYJSIPHO MHOJIIPU30BAHHBIX ITyYKOB BBICIINX IIOPSIAKOB B
OJITHOOCHOM KpHCTaIe. BUXpeBoii MydoK C TOTOJIOTHYECKHM 3apsiioM L pacHIeIuIseTcs Ha ITy90K ¢ 3apsaoM
L-1, KOTOpBIH pacmpoCTpaHseTcs BIOJb HANPaBICHUS PACHPOCTPAHCHUS II€PBOHAYAIBHOIO Iydka U
OJIMHOYHBIN BUXPh, CMEIICHHBIH B HAIPaBJICHHN NEPIEHANKYIIPHOM IUIOCKOCTH HAaKJIOHA ITy4Ka. [IprunHoif
TaKoOro CMELICHUS BUXPS €CTh OOKOBOE CMEIICHHE MNaplHalbHOroO Iydka. Mbl paccmaTtpuBaeM 3ddext
OOKOBOTO CMEIICHHMS KaK C TOYKM 3PEHHs 3aKOHA COXPAHEHWs II0TOKA YIJIOBOTO MOMEHTAa, TaK M Ha
OCHOBaHUH PEILIECHHS IapaKCHAIbHOTO BOJIHOBOIO ypaBHEHHs. MbI 1oka3aiu, 4To G0KOBOE CMEILIEHHE Iy4Ka,
[oCIe MPOXOXKIEHHUS KpUCTAIa HE 3aBUCHT HU OT BEIMYMHBI HHM OT 3HAKa TOIOJIOIMYECKOro 3apsna
OINTHYECKOTO BUXPS, U 00YCIIOBIEH TOJIBKO EPBOHAYAIBHOMN IUPKYJIALMEH U YIJIOM HAKJIOHA ITy4Ka.
Kntouegvie cnoea: 0JHOOCHBIN KPUCTAILI, JTA3€pPHOE M3IIyICHHE, TOTIOJOTHIECKH 3apsi, ONTHIECKUH BUXPB,
COCTOSIHHUE TIOJISIPU3ALIH, MOIPU3ANNOHHAS CHHTYIISIPHOCTb.
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