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An initial boundary value problem with Dirichlet or Neumann boundary conditions is considered. This 
problem describes evolution of a nonconserved order parameter in binary alloys near the disordered phase. It 
is shown that the problem has asymptotically oscillating stationary distributions of the order parameter. This 
oscillation describes so-called antiphase boundaries (APB) in binary alloys. The corresponding phase diagram 
is constructed. Particularly, it is shown that the temperature is a bifurcation parameter. The stationary 
antiphase boundaries with a different number of oscillations between the walls confining the sample arise at 
cooling in binary alloys on long time scales. Further, it is shown that if there is a small parameter of the 
system, contrast structures are formed, i.e. step-constant asymptotically stationary distributions of APB. 
Keywords: binary alloys, antiphase boundaries. 

 
INTRODUCTION 
 
The paper contains analysis of three main aspects of the problem. The first one is the 

formation of antiphase domain structures from the disordered state (see [1], Photo. 1, 
described anneal-ageing of an alloy in disordered state). This process was studied by 
Matsubara (1990) in Fe3Al, by Allen and Krzanowsky [1985], Park and Allen [1986] with 
microscopic observation (see references in [1]). For example, Matsubara [1989] observed 
the process of DO3 ordering of Fe3Al, after quenching from B2 state. Here it is assumed that 
small domains are formed randomly within the disordered (B2) matrix. It was supposed in 
the experiments that the domains change their shapes and sizes at the early stage of 
isothermal ageing. In contrary, we consider the case of asymptotic behavior as time t  , 
because the strict asymptotics has not been considered in the previous cited paper. 

To analyze the process, the corresponding evolution equation has been constructed 
[1]. The Allen-Cahn partial differential equation of the second order was supplemented 
with periodic boundary conditions and random initial conditions. At every moment t>0, 
there are oscillating solutions of sinusoidal type (see [1], Fig. 1). This figure describes the 
evolution of nonconserved order parameter, which models so-called antiphase boundaries 
(APBs). Thus, we obtain oscillating order parameter distributions of sinusoidal type in the 
disordered phase at early stage of evolution. But as t>0 is large, we obtain (by computer 
simulation) the step-constant oscillating structures of relaxation type ([1], Fig.2). In 
mathematics, such structures are called contrast ones (see, for example, [2]). 

In the previous papers, the Allen-Cahn equation with periodic boundary conditions 
has been studied [1]. Here we consider the Dirichlet and Neumann boundary conditions. 
In the previous papers, random initial conditions were studied with the help of computer 
simulation. We consider deterministic initial conditions and use the well-known 
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mathematical result to study of evolution of non-conserved order parameter in confined 
binary alloys. We show that the typical asymptotic is sinusoidal near the disordered phase. 
There are also limit distributions of spike-type, if dimensionless diffusion coefficient is 
small; and limit distributions exist in the form of stationary contrast structures, if there is 
the transform ,t t  where ε>0 is the small parameter that characterizes spatial-
temporal ”inhomogeneities” in the binary alloy and describes the thickness of antiphase 
boundary layers (see, for example, [3, 4]). Further, we introduce the function of the 
inhomogeneities at the disordered phase a(x,ε), which changes the amplitude u(x,t)≡0 of 

the disordered phase by the transform      , , ,u x t u x t a x  . Coordinates of the 

front of phase transition can be established by the coordinates of the intersection of 
u(x,0,ε) and a(x,ε) curves. 

The bifurcation diagram for initial boundary value problem (IBVP), which 
determines the properties of antiphase boundaries (APB) in binary alloys, is considered. It 
is proven that APBs are asymptotically unstable at all temperatures, but ”life time” of such 
metastable oscillating states may be long. It is well-known that in the case of ordered 
alloys, typical defects are antiphase domains, which are the results of interaction between 
atoms of sort A and B in the binary lattice. In this paper, we study IBVP for a non-
conserved order parameter with the classical Neumann (or Dirichlet) boundary conditions. 

We define the order parameter  : 1A B A Bu         as the difference between 

the densities of atoms of type A and B, correspondingly. We show that as int   , 

where int  is an exchange time between  the jumps of atoms A and B in the lattice, there 

exist asymptotically stationary oscillating distributions of the order parameter. 
There are many problems, where formation of APB in binary alloys is included into 

consideration, but in previous papers, in typical cases, periodic boundary conditions are 
considered, and, usually, computer simulations are provided. The results are phase 
diagrams for special values of parameters of the problem (see, for example, [1]). In this 
paper, the strong phase (or bifurcation) diagram is constructed, which describes all 
admissible parameters of the boundary problem. Two situations may arise: the oscillating 
asymptotic stationary distributions of ”spinodal type” may appear, and, for a special type 
of parameters, when a small parameter ε of the problem exists, there are asymptotically 
oscillating step-constant distributions. 

 
1. FORMULATION OF THE PROBLEM 
 
Let us consider the thermodynamical potential  

    2
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where  f(u) is the free energy density per unit volume, as given by 
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where A(T) changes from negative to positive values at the critical temperature T=Tg for 

the order-disorder transition; B(T) is positive; K(T) is the positive interfacial energy per 
unit length; kB is the Boltzman constant. The temperature Tg is given by the root of 

equation A(T) = 0. Evolution of the order parameter may be described by the Landau-
Chalatnikov equation [5]: 

 u F
M T

t u





 


,                                                  (3) 

where M(T) is the positive reaction rate, δF/δu is the variational derivative. The 
equilibrium distributions should be given by 
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From (4), we obtain 
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where 
 
 

1
2

e

A T
u

B T

 
   
 

. Then equation (3) can be rewritten as 
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,                                                           (6) 

where G[u] is described by (5). Here, we use the transforms  t M T t and x x l . 

Further, we consider the Neumann boundary conditions for solutions of (5) 
ux(0,t)=0,    ux(l,t)=0,                                                    (7) 

or the Dirichlet boundary conditions 
u(0,t)=0,    u(l,t)=0.                                                   (8) 

From (7), it follows that thermodynamic flux is zero on the walls, which confine 
binary alloys. According to (8), the binary alloy is in the disordered phase at the walls. 
Additionally, we consider an initial condition 

     0,0 , 0u x u x x    .                                         (9) 

If t→∞, in Sobolev space  1
0 0,H   of distribution [6], the solutions u(,t) tend to 

stationary states φ(x), 0 < x< π, which are solutions of equation: 

      0, 0x a x b x x         ,                            (10) 

where a=B(T)ue(T)2 and b = B(T). From [7], it follows that there is a finite number of 

stationary states in the interval 0 < x < π, i.e. (2n+1), n=0,1,..., if n2<a≤(n+1)2 
(correspondingly, the transform n n l takes place in the interval 0<x<l. If 0<a≤1, 
zero or trivial solution is globally asymptotically stable. If a > 1, this solution is unstable 
as well as all other solutions, with the exception of two solutions, which we define as 
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1 1,   . These asymptotically stable limit distributions have the property 1 10     

for all 0< x < π. A region of attraction of  1 1,    is open dense set in  1
0 0,H  . 

It is well-known that there is a neighborhood of zero, in  1
0 0,H  , that is positive-

invariant for all small enough |a − 1|. This region is separated in two open sets by stable 
manifold of the zero solution for small a − 1 > 0. We call this two sets by the attractive 

regions of  1 1,    (see Fig.1, [6]). If B is a sufficiently large ball with the center in the 

zero in  1
0 0,H  , and u(t, B) is the set of all points that are reached by solutions u at the 

moment of time t, then 

 0 ,t u t  BK                                                     (11) 

is the maximal invariant set. This set is of finite dimension, compact and connected. The 
set is a union of unstable manifolds of equilibrium states. We have phase portraits that 
may be found in [6], Fig. 2. 

If n2<a≤(n+1)2, the set K  has the number of dimensions n, that is a closer of an 

unstable manifold of zero. 
 
2. THE CHAFEE-INFANTE INITIAL BOUNDARY VALUE PROBLEM 
 
In [7], the following boundary problem is considered: 

        , , , , 0 , 0t xxu x t u x t f u x t x t        ,                (12) 

u(0,t)=u(π,t)=0,    (0<t<+∞),                                           (13) 
u(x,0)=φ(x),    (0≤x≤π).                                               (14) 

What is the asymptotic solutions of this problem as t→+∞? The basic tool to solve 
this problem is the maximum principle for parabolic partial differential equations. Here, 

:f R R  is a given continuous function;  : 0, R    and 1C   such that 

   0   . 

 
2.1 The Chafee-Infante boundary problem for binary solid solutions 
In (12), we may define a function f(u) to be proportional to the function E'[u]/kBT. 

The parameter λ may be defined as Emix/kBT, where Emix is so-called mixing energy, and 

λ describes potential energy (normalized on heat energy) of interaction of atom in the 
central lattice point with all atoms of the first coordinating sphere, which is equal to 
Z(PAAΦAA+PBBΦBB+2PABΦAB). The potential energy of the lattice is  

 : 2
2 AA AA BB BB AB AB

NZ
E P P P      ,                                 (15) 
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where Z is the coordination number; N=NA+NB, NA, NB are numbers of atoms of sort A, 

B, correspondingly; PAA, PBB, PAB describe ordering in equilibrium systems. Further, 
,AA BB  , and AB  are potential energies of pair interactions of two atoms, which are 

placed on the distance of radius of the first coordination sphere. Here, the first index 
describes the type of atom placed in the considered lattice point, and the second index 
denotes the type of atom on the first coordination sphere. If the lattice is stable, we obtain 

0, 0, 0AA BB AB      , and ΦAB=ΦBA, so that in disordered solid solution, we 

have PA=cA, PB=cB, where cA, cB are the corresponding concentrations of atoms. Then 

we can obtain that  

   1 2 exp 1AB A B A B mix BP c c c c E k T    ,                         (16) 

   2 21 2 exp 1AA A B mix BP c c E k T    .                            (17) 

Further, there is a formula [8]: ΔεAB=−ZPABEmix, where ΔεAB is the internal 

energy released when a solid solution is formed. It is well-known that [8]  

 2 2: 2
2 A AA B BB AB AB

NZ
E c c P      .                              (18) 

From (16), it follows that  

  2 2 2 , ,
2AB A AA B BB AB A B mix

Z
c c P c c E      ,                         (19) 

where PAB is determined by (16). 
Without loss of generality, it can be assumed that 1mix BE k T  , where kBT is of 

order of heat energy. Then from (16),(17), we obtain that 

1 2 1mix
AB A B A B

B

E
P c c c c

k T

  
    

  
,                                      (20) 

2 21 2 1mix
AA A B

B

E
P c c

k T

  
    

  
.                                         (21) 

Thus Emix/kBT describes the correlation between neighbors atoms, i.e., the short 

order. For given Emix, with increasing of the temperature, the corresponding correlations 

are reduced. It will be proved that the value χ=Emix/kBT, which characterizes intercalation 

energy, is the bifurcation parameter. This means that solution of the boundary problem, 
which models an evolution of the order parameter in confined binary alloys, tends to 
stationary oscillating limit solutions, as time t→∞. A number of oscillation per interval 
0<X<l depends on the parameter χ. 
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If Emix≠0, but χ<<1, we may use the approximation of ideal solid solution, supposing 

that Δε/kBT is sufficiently small. In this case,  1B A Ak T c c    , and we must use 

the sign (+), if Emix>0, and sign(−), if Emix<0. Further, we obtain that  

 2 2 2
2 A AA B BB AB mix

NZ
E c c P E     ,                              (22) 

where  
2 mix

AB A B
B

E
P c c

k T
  .                                              (23) 

Let us suppose u=cA−cB, where cA+cB=1. Then from (22), we have  

2 2 2 2
4

2
mix

B AA A BB mix B A
B

ENZ
E u c u c E u c u c

k T

 
          

 
.      (24) 

Below we consider perturbations of a nonconserved order parameter at a 
neighborhood of the disordered phase u=0, where cA=CB. It follows from the last equality 

that we can use 1 2A Bc c  , where 1/2 plays the role of probability. Now we define 

1 2u u  , and rewrite (24) in the form  

  2
2 2 4

4
2

mix

B B

E u ENZ
A u B u u

k T k T

  
        

,                           (25) 

where AA BA k T  , and BB BB k T  . Then 

    2 36
B

E u
NZ A B u NZ u

k T



   .                                  (26) 

The linear approximation at the point u = 1/2 results in the determination of energy:  

     2 21 3 9 1 1

2 4 4 2 2B

E u
NZ A B NZ NZ A B NZ u O u

k T
                   

     
. (27) 

Transforming 1 2u u  , from (27), we obtain for the derivative  

     1

2B

E u
NZ A B u O u

k T



                                        (28) 

at the point u = 0, where  2 23 9
:

4 4
NZ NZ A B NZ       

 
 and 

 1
:

2
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 . Then from (28), we obtain that  
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E u
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k T



                                                  (29) 
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at disordered phase. 
Further, for a disordered solid solution, entropy SAB can be represented in the form [8]: 

AB id mixS S S  ,                                                     (30) 

where Sid is the entropy of an ideal solid solution, and Smix is the entropy of mixing. It is 

well known that for ideal solid solutions, the second term in (30) can be neglected. The 
first term is 

 ,
ln lnA B A B

A B
B A B

S c c c c
c c

k T N N
  ,                                     (31) 

where NA+NB=N. Assuming that cA=cB=c, we obtain the curve of phase coexistence: 

 1
ln 1 2 0

1

c
c

N c
      

.                                       (32) 

 
3. THE ALLEN-CAHN EQUATION 
 
Further, we consider the Allen-Cahn equation, which represents a gradient flow for 

the free energy functional 

   
1

2

0

1

2 xu u F u dx    
  ,                                        (33) 

where F'(u) = f(u) and 0 < x < l is the spatial domain, which is occupied by the binary 
alloys under consideration. Here, 

  ln
1

u
f u u

u
      

,                                              (34) 

where the first term follows from the linear approximation of ordering energy for an ideal 
solid solution. The second term, at u = 1/2, is 

1 1
ln

1 2

u
u O u

u N
            

.                                       (35) 

Hence,   1
F u

N
   . We consider the case 1 N   when there is phase 

decomposition of disordered phase on two ordered phases. Further, 2
0Ur  , where U is 

the interface energy between ordered and disordered phases; r0 is the correlation radius 

between atoms of solid solution. 
A corresponding gradient flow is [3-5]:  

 tu u
u





  ,                                                 (36) 

where u   is the L2 functional derivative of  . The result is  
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       21

2t xx xu u u u u u f u       
.                            (37) 

The linear version (at u = 0, that is, at disordered phase) is  
3

t xxu Du au bu   ,                                               (38) 

where we use the representation (26) for f(u), so that a = NZ(A+B)u and 

b=6NZχ2u3 (χ=λ−1/N). In the general case,  1 gA B T T   , where Tg is the critical 

temperature of decomposition of a homogeneous disordered binary solid solution (see 

[5]). Here,  , 0t t D  where  
2

00
B

rU

k T l
    

 
. 

Then, applying formal results of [7], we obtain following statements: If t→+∞, 

solutions u(,t) tends to a stationary state φ in the Sobolev space  1
0 0,H   that is a 

solution of the problem [6]: 

   3 0xx a x b x     ,                                           (39) 

where ã=NZ(A+B)/D and b =6NZχ2u3/D. It follows from (39) that 

 2 0t xx eu         ,                                         (40) 

where λ=b and e a b   . 

The Dirichlet boundary conditions are 

   0 0, 0l   .                                               (41) 

Chafee and Infante [7] proved that, if  22 1 , 0,1,2,...n a n n    , there are 

(2n+1) stationary points 0 0  , and  1,...,k k n  , where   0kd dx    at x = 0, as 

n2<a<≤(n+1)2,   0kd dx     at x = 0, and the function  k
  has (k−1) zeros on interval 

0 < x < π . Further, if λ > 1, k
  are asymptotically stable in linear approximation, but 0  

and  2k k n    are together asymptotically unstable. 

 
4. SPIKE-TYPE ASYMPTOTICALLY STATIONARY STABLE STRUCTURES IN 

CONFINED BINARY MIXTURES 
 
The results of [9] show that periodic APBs have two competing annealing processes: 

the annihilation of APBs trough formation of peak stationary distributions (Fig.1). This 

distribution appears as parameter ε=K(T)/l2 becomes small, whereas K(T) plays the role of 
”mobility”. Indeed, let us study the boundary-value problem 

ut=M(T)K(T)uxx+M(T)B(T)(ue(T)2−u2)u.                              (42) 
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Fig. 1. Peak stationary distributions of the nonconsereved order parameter in a binary alloy. 

 

Let us assume   2t M T l , and x x l . Then, from (42), we obtain that 

    2 2( )t xx eu u B T u T u u h u    ,                              (43) 

where ε=M(T)/l2. We suppose εll1, and consider the Dirichlet boundary condition 
u(0,ε)=Ã,    u(1,ε)=̃B,                                              (44) 

which means that surface atoms are in ”partially ordered” phase. This fact may be 
interpreted as surface segregation of atoms with surface densities    0, , 0A At B t    

and    1 , ,1A As t B B   , where A,B are constants. In literature, only the case of A=B=0 

is considered, where the surface atoms are in the disordered state. 
 
4.1. The degenerated case 
At ε = 0, the degenerated equation (42), or h(y)=0, has three stationary solutions 

   1,3 eu x u T   and u2(x)≡0. Since h'(u2)>0, h'(u1)=h'(u3)<0, only the solution 

u=u2(x) is stable. 

Using the integral condition of stability [10] for solutions of boundary problem 
(42),(44), which has the form  

    2 2

0

0eB T u T s sds


                                       (45) 

(see also, [5] and [10], p.53). Simple calculations of integral result in the inequality 

 2 eu T  . Hence, from the result of O’Mally [10], the statement follows: if 

 , 2 eA B u T  ; then there are solutions where the limit relation 

   lim , 0, ,1u x x


  


                                      (46) 

is valid. 
In addition to solutions (46) of boundary-layer type, as ε→→0, the considered 

boundary problem has oscillating solutions of the peak-type layer when a solution tends, 
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to zero for all points on interval [0,1] as ε→→0, with exception of some number of points 
of the interval, which are placed at equal distance from one to another (see Fig. 1). In 
some neighborhood of every point, for sufficiently small ε>0, this solution has a narrow 
peak. This peak does not tend to zero as ε→0. 

This result follows from [10], at the point u2(x)≡ the integral  

      2 2
u

e

A

u B T u T s sds                                      (47) 

has the maximal value, i.e. the potential energy of the system is maximal. We have also 

   2 0 0eu u T       , if  2 eA u T , and the value  2 eu u T  is 

not the point of maximum of function Ψ[u]. This result means that, for any integer n≥0, 

the boundary problem has four solutions u=u(x,ε), if  2 eA u T  and 

 2 eB u T , satisfying the limiting relation  

   lim , 0, ,1u x x


  


                                       (48) 

with  0,1 2  , except the points , 1, 1ix i n i n   , where the limit relation is 

satisfied:  

   lim , 2 eu x u T





  .                                       (49) 

For n = 2, we have one peak, and for n = 3 we have two peaks. In the general case, 
amplitudes may not be equal (see, for example, Fig. 1). 

 
4. THE CONTRAST STRUCTURES 
 
Now we consider the bistable Cahn-Hilliard equation [3, 11] 

       , 0t xxu M T K T u f u x l     ,                  (50) 

where the diffusion coefficient   2K T l  is small. The parameter   diffM T O   is 

large, so that       1K T M T O   , where O(1) is a bounded value; diff is the typical 

time of diffusion of atoms. As shown in [3], we obtain from this condition that there are 

solutions in the form of internal layers of thickness O(k−1/2). The layers move with the 
phase velocity 

   V M T K T R   ,                                           (51) 

where R is the mean curvature of a layer. 

We rescale the time variable t, so that 2t t  , where  t M T ; and we 

transform the spatial variable x, so that 2x x  , where x x l . Then equation (50) 
can be rewritten as 
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         22 2 2 , , 0t xx eu K T u B T u T u u a x x l        .         (52) 

Further, we introduce new time variable  t K T t  and rewrite (52) as 

          22 2 2 , , 0t xx eu u B T K T u T u u a x x l        .       (53) 

Here, we introduce the function  ,a x  , which describes the spatial-temporal 

inhomogeneities in the disordered phase. As 0 , there are two stationary solutions 

   , eu x t u T  . The points  eu T  correspond to two minimums of the free energy. 

Further, let us introduce the point  ,a x  , which corresponds to the maximum of free 

energy. This point determines a boundary between the areas of influence of the left stable 
zone u=−ue(T) and the right one u=ue(T). 

It is well-known (see, for example, [2,12]) that equation (52) with the homogeneous 

Neumann boundary condition and with the initial state    0,0u x u x , has 

asymptotically stable solutions presented in Fig.2. The phase boundary is established as 

the intersection point between the graphics of functions  ,a x   and u0(x). It is evidently, 

how this boundary changes, if  ,a x  ≡0. Thus we obtained the distributions of APB that 

may be called contrast structures [2, 12]. 
 

 

Fig. 2. Contrast asymptotically stationary structures in binary alloys. 
 
CONCLUSIONS 
 
We investigated the dynamics of formation of asymptotic stationary domains at 

isothermal ageing in binary alloys. This dynamics may be observed by a microscop as a 
dark field image (see [1]). The first considered case is the evolution of APBs, or antiphase 
ordered domains, in an alloy with so-called contrast structures, which are step-constant 
oscillating stationary structures described by the nonconserved order parameter with 
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Neumann’s boundary conditions. These structures, as shown in [1], are observed in 
substitution binary alloys. The obtained theoretical results are compared with the scenario 
of formation of APBs in Fe3Al at ordering B2 to DO3. The second case is the classical 

APD of sinusoidal type. The third case is the phase separation, which results in formation 
of so-called peak-type structures that can be reduced, if the dimensionless diffusion of 
atoms is small. The APBs of sinusoidal type have been observed for small oscillations of 
the order parameter at the disordered phase. But the contrast structures and peak-type 
structures are obtained for finite amplitudes of order parameters. 
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