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Introduction

The Berge equilibrium concept was introduced intuitively by French mathematician
Claude Berge [1]. A brief review of Berge’s book by Shubik [2] scared economists and
contributed to its subsequent neglect in the English-speaking world. Particularly it
was marked: ”The arguments have been presented in a rather abstract manner and
no attention has been paid to applications to economics. The book will be of a little
direct interest to economists”. The Berge’s book was translated into Russian in 1961,
and V.Zhukovskiy in 1994-1995 formalized the Berge equilibrium for linear-quadratic
differential games under uncertainties [3], [4].

Note that Nash equilibrium is a common optimality concept for non-cooperative
games. The key difference is that in case of Nash equilibrium an individual player’s
deviation from the equilibrium cannot increase the player’s own payoff whereas; at the
same time in case of Berge equilibrium a deviation by one or more players can reduce
the payoff of a player, who does not deviate from an equilibrium situation. The Berge

1Работа выполнена при поддержке РФФИ, проект №14-01-90408 Укр_а.
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equilibrium concept formalizes mutual support among players motivated by the altruistic
social value orientation in such games.

Now turn to formal definitions. Consider a non-cooperative game of three persons

Γ3 = ⟨{1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3⟩ ,

where Xi ⊂ Rli is a set of strategies xi of the i-th player, fi(x) is his payoff function, a

situation x = (x1, x2, x3) ∈ X =
3∏
i=1

Xi.

K. Vaisman called a couple (xv, fv) ∈ X × R3 a Berge equilibrium solution for the
game Γ3 [5]-[7] if the following conditions

(10) a situation xv = (xv
1, x

v
2, x

v
3) satisfies a Berge equilibrium condition, i.e.

f1(x
v
1, x2, x3) ≤ f1(x

v) ∀ xj ∈ Xj (j = 2, 3),

f2(x1, x
v
2, x3) ≤ f2(x

v) ∀ xk ∈ Xk (k = 1, 3),

f3(x1, x2, x
v
3) ≤ f3(x

v) ∀ xr ∈ Xr (r = 1, 2);

(20) a property of individual rationality holds for all players, i.e.

f1(x
v) ≥ max

x1
min
x2,x3

f1(x),

f2(x
v) ≥ max

x2
min
x1,x3

f2(x),

f3(x
v) ≥ max

x3
min
x1,x2

f3(x)

hold.
The "game"sense of the condition (20) is as follows. If the property of individual

rationality (20) holds then every player provides himself a payoff fi(xv) (i = 1, 2, 3) which
is at least not less than the i-th player’s maximin. The condition (20) first was proposed
by Zhukovskiy’s doctoral student Konstantin Vaisman in 1994 [5]-[7]. He constructed
some examples such that a situation satisfying the Berge equilibrium conditions (10)

provides some players payoffs which are less than their maximins. In order to overcome
this negative property of the Berge equilibrium Vaisman proposed to use additionally
condition (20). Moreover, the following results were obtained by Vaisman:

− in some cases the Berge equilibrium exists, when there is no Nash equilibrium;
− in some games (The Prisoners’ Dilemma, The Environmental Protection [8, p.

193]) if players simultaneously choose Berge equilibrium strategies, then everyone
receives a larger payoff than if they chose Nash equilibrium strategies.

Konstantin Vaisman died suddenly at the age of 35 in 1998. He owned a remarkable
trait: he had been helping everyone and forgetting himself. The authors of this paper
think that Vaisman’s researches of Berge equilibrium provide a basis to call the
above mentioned solution (xv, fv) of the non-cooperative game Γ3 the Berge-Vaisman
equilibrium.
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Sufficient existence conditions of the Berge equilibrium were obtained by Zhukovskiy
[9] in the form of existence conditions for a saddle point (x0, zv) ∈ X×X of the Germayer
convolution max

i
(fi(x∥zi)− fi[z]), zi ∈ Xi, z = (z1, . . . , zn) ∈ X =

∏
i∈N

Xi. The ideas of

this approach have been used in the current research.
The aim of this paper is

− to formalize the Berge guaranteed solution for the non-cooperative game of n
persons under uncertainty, when we have only the limits of variations of these
uncertainties;

− to prove existence of the Berge guaranteed solution in the class of mixed
strategies (probability measures).

1. Auxiliary data

1.1. Existence conditions for continuous selector. First introduce some facts from
mathematical programming [10], [11].

Suppose that

(1) a set X ⊂ Rl (Rl is the Euclidean l-dimensional space) is a compact one;
(2) a set Y ⊂ Rm is a convex compact one;
(3) a scalar function F (x, y) is determined and continuous on X × Y , x ∈ X and

y ∈ Y ;
(4) for any x ∈ X the function F (x, y) is strictly convex in y ∈ Y , i.e.

F (x, λy(1) + (1− λ)y(2)) < λF (x, y(1)) + (1− λ)F (x, y(2))

for all y(j) ∈ Y (j = 1, 2) and any λ = const ∈ (0, 1).

Then there exists a continuous m-vector function y(x) : X → Y such that

min
y∈Y

F (x, y) = F (x, y(x)) ∀x ∈ X.

1.2. Maximin in terms of hierarchical game. In game theory a maximin strategy
xg and a maximin F g are defined by the chain of equalities

max
x∈X

min
y∈Y

F (x, y) = min
y∈Y

F (xg, y) = F g. (1)

For the process of accepting a guaranteed solution (xg, F g) ∈ X × R we can suggest
the following interpretation in terms of bilevel hierarchical game [10]. Two players are
participating in the game: Center and a player at a lower level on the hierarchy. Assume
that Center forms his own strategy x ∈ X and the player at the lower level constructs an
uncertainty y(x) : X → Y , y(·) ∈ C(X,Y ) (see Fig. 1). The game proceeds as follows.

The first move is made by Center. He informs the lower level player of his possible
strategies x ∈ X.
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Pic. 1

The following (second) move is transferred to the lower level player, who forms an
uncertainty y(x) : X → Y such that for every x ∈ X

min
y∈Y

F (x, y) = F (x, y(x)) = F [x], (2)

and informs Center about a specific type of the uncertainty y(x).
Finally (third move): Center forms a pair (xg, F g) which is defined by the condition

max
x∈X

F (x, y(x)) = F (xg, y(xg)) = F g. (3)

Thus, Center can use the strategy xg. In this case Center provides himself the guarantee
F g whatever uncertainty y(x) ∈ Y has been realized because F g ≤ F (xg, y) ∀y ∈ Y .
Since F g ≥ F [x] ∀x ∈ X, the guarantee F g is the largest of all guaranties F [x] .

The given above "hierarchical"approach will be applied in Section 2.

1.3. Mathematical model of conflict. Assume that a mathematical model of conflict
is represented by a non-cooperative game of N persons under uncertainty

ΓN = ⟨N, {Xi}i∈N , Y X , {fi(x, y)}i∈N ⟩.

Here N = {1, . . . , n} is a set of the agents (players) numbers. A strategy of the i-th
player xi ∈ Xi ⊂ Rli (i ∈ N). The players choose their strategies independently of each
other in the game ΓN . Each i-th player formes and uses his own strategy xi ∈ Xi (i ∈ N).
As a result we get a situation x = (x1, . . . , xn) ∈ X =

∏
i∈N

Xi ⊂ Rl (l =
∑
i∈N

li). A set of

uncertainties y(x) : X → Y ⊂ Rm is denoted as Y X . In the terminology of the theory
of zero-sum games y(x) is a countersituation. We define a payoff function fi(x, y) of the
i-th player on the sets (x, y(x)). The i-th player obtains the payoff fi(x, y(x)) which is
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equal to the value of his payoff function in the concrete couple (x, y(x)). The aim of the
i-th player is to choose a strategy xi ∈ Xi such that his payoff is rational according to
his point of view. By choosing their strategies the players need to focus on possibility of
realization of any uncertainty y(x) ∈ Y X .

Let us now turn to the notion of a guaranteed solution of the game ΓN .

2. Guaranteed solution of game ΓN

2.1. Definition. To formalize a solution of the game ΓN we shall use the approach from
Subsection 1.2. The only difference is that we replace formation of the interior minimum
from (2) by formation of n minimums (for every i-th player)

fi[x] = min
y∈Y

fi(x, y) = fi(x, y
(i)(x)) ∀i ∈ N, x ∈ X. (4)

Moreover we replace formation of the outer maximum from (3) by two following
operations:

a) find a set Xv of all situations xv in the "game of guaranties"

Γg = ⟨N, {Xi}i∈N , {fi[x] = fi((x, y
(i)(x))}i∈N ⟩

such that the Berge equilibrium condition is satisfied, i.e.

max
xN\{i}∈XN\{i}

fi[x∥xv
i ] = fi[x

v] (i ∈ N), (5)

where

[x∥xv
i ] = [x1, . . . , xi−1, x

v
i , xi+1, . . . , xn], xN\i = [x1, . . . , xi−1, xi+1, . . . , xn],

XN\{i} =
∏

j∈N,j ̸=i
Xj ;

b) find a Slater maximal situation x̄v ∈ Xv in the n-criteria problem

⟨Xv, {fi[x]}i∈N ⟩ (6)

such that the system of strict inequalities

fi[x] > fi[x̄
v] = fsi (i ∈ N) (7)

is inconsistent for any x ∈ Xv.

Then the couple (x̄v, f s) ∈ X × Rn is called a Berge strong guaranteed solution
(equilibrium) in the game ΓN . Here the n-vector f = (f1, . . . , fn) ∈ Rn. We present
a construction process of the Berge strong guaranteed solution in the game ΓN in Fig.
2.

Now introduce a formal definition.
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Pic. 2

Definition 1. A couple (x̄v, f s) ∈ X × Rn in the problem ΓN is called a Berge strong
guaranteed solution (BVSGS) if there exist n continuous m-vector functions y(i)(x) (i ∈
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∈ N) such that

min
y(·)∈Y X

fi(x, y(x)) = fi(x, y
(i)(x)) = fi[x] ∀x ∈ X (i ∈ N),

and

10) there exists a situation xv ∈ X in the non-cooperative "game of guarantees"

⟨N, {Xi}i∈N , {fi[x]}i∈N ⟩ (8)

such that the equality (5) is satisfied. The set of all situations xv is designated
by Xv ;

20) the situation x̄v is Slater maximal for the n-criteria problem

⟨Xv, {fi[x]}i∈N ⟩,

i.e. for any x ∈ Xv there exists an index j(x) = j ∈ N such that

fj(x) ≤ fj(x̄
v) = f sj .

This condition is equivalent to inconsistency of the system fi[x] > fi[x̄
v] = f si

(i ∈ N) for any x ∈ Xv.
30) the n-vector fS = (f1[x̄

v], . . . , fn[x̄
v]) = (fS1 , . . . , f

S
n ).

2.2. Sufficient conditions for the Berge equilibrium. We assign the Germayer
convolution [12]

φ(x, z) = max
i∈N

(fi[x∥zi]− fi[z]) (9)

to the "game of guarantees"(8). Here

[x∥zi] = [x1, . . . , xi−1, zi, xi+1, . . . , xn] ∈ X =
∏
i∈N

Xi, zi ∈ Xi (i ∈ N),

z = [z1, . . . , zi, . . . , zn] ∈ X.

A saddle point (x0, zv) of the scalar function φ(x, z) is determined by the chain of
inequalities

φ(x, zv) ≤ φ(x0, zv) ≤ φ(x0, z) ∀x, z ∈ X. (10)

Taking into account (9) from the left inequality in (10) for zv = x0 we get

φ(x0, x0) = max
i∈N

(fi[x
0∥x0i ]− fi[x

0]) = 0.

Then (10) yields

φ(x, zv) = max
i∈N

(fi[x∥zv
i ]− fi[z

v]) ≤ 0 ∀x ∈ X.

Hence for every i ∈ N

fi[x∥zv
i ]− fi[z

v]) ≤ 0 ∀x ∈ X.

Thus, we get for all x ∈ X

fi[x∥zv
i ] ≤ fi[z

v]) (i ∈ N). (11)
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Fulfillment of the conditions (11) for all x ∈ X (i ∈ N) means that the second
component zv = xv ∈ X of the saddle point (x0, zv) satisfies the Berge equilibrium
condition (5).

Remark. Construction of the Berge equilibrium situation zv = xv ∈ X (which is
determined by (5)) is reduced to construction of the saddle point (x0, zv) ∈ X2 of the
scalar function (9). The second component zv ∈ X of the saddle point (x0, zv) satisfies
the Berge equilibrium condition (5).

2.3. Continuity of function φ(x, z).

Proposition. Suppose that in the "game of guarantees"(8) the following conditions

1. the sets Xi are compact ones (i.e. closed and bounded) in Rli ;
2. the payoff functions fi[x] are continuous on X (i ∈ N)

take place. Then the scalar function φ(x, z) from (9) is continuous on X ×X.
This proposition follows immediately from the well-known property [11]: suppose that

the function ψ(u,w) is continuous on U×W and the set W is compact; then the function
η(u) = max

w∈W
ψ(u,w) is continuous on U .

3. Mixed strategies

3.1. Borel σ-algebra. We consider the segment Y ∗ = [y1, y2] ⊂ R. A collection ℑ of
subsets of Y = {y ∈ R|y1 ≤ y ≤ y2} is called σ-algebra if it satisfies the following three
properties:

1. [y1, y2] is an element of ℑ;
2. if T ⊂ [y1, y2] is an element of ℑ, then its complement [y1, y2] \ T is an element

of ℑ as well;

3. if Tk ⊂ [y1, y2] (k = 1, 2, . . .) are an elements of ℑ then their union
∞∪
k=1

Tk is an

element of ℑ too.

If every element of σ-algebra ℑ(1) is an element of σ-algebra ℑ(2) then one can say
that σ-algebra ℑ(2) contains σ-algebra ℑ(1).

First, we consider any σ-algebra ℑ which contains all segments [α, β] ⊂ [y1, y2]. One
can prove that there exists a smallest σ-algebra B(Y ∗) such that

1. it is an element of any other σ-algebra;
2. all closed segments from [y1, y2] are the elements of B(Y ∗).

This σ-algebra B(Y ∗) is called the Borel σ-algebra. Elements of the Borel σ-algebra
B(Y ∗) are called Borel measurable sets. Thus for the segment [y1, y2] the Borel σ-algebra
is the smallest σ-algebra over [y1, y2] containing all closed subsets of [y1, y2].

Second, for the set Y ∗ = {y = (y1, . . . , ym) | yi ∈ [y
(1)
i , y

(2)
i ] (i = 1, . . . ,m)} σ-algebra

ℑ is a collection of subsets of Y ∗ such that
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1. Y ∗ is an element of ℑ;
2. ℑ is closed with respect to the complementation operation Y ∗\Yk for all Yk ∈ ℑ

(k = 1, 2, . . .);

3. ℑ is closed with respect to the operation of countable unions
∞∪
k=1

Yk.

The Borel σ-algebra B(Y ∗) is the smallest σ-algebra over Y ∗ containing all closed
subsets of Y ∗.

Third, we consider a set Y ∈ Rm . Let Y be compact and hence bounded. Then there
exist numbers y(1)i , y(2)i (i = 1, . . . ,m) such that

Y ⊂ Y ∗ = {y = (y1, . . . , ym) | y(1)i ≤ y ≤ y
(2)
i (i = 1, . . . ,m)}.

Let us construct B(Y ∗). Then

B(Y ) = B(Y ∗)
∩
Y = {Yk

∩
Y | Yk ∈ B(Y ∗)}.

The Borel σ-algebra B(Xi), where the set Xi (i ∈ N) of pure strategies xi of the i-th
player is a compact set in Rli , is constructed in the same way.

3.2. Mixed strategies and situations in mixed strategies. Assume that in the
class of pure strategies xi ∈ Xi (i ∈ N) there does not exist a situation xv satisfying the
Berge equilibrium condition (5). Then one can follow the approach proposed by Borel,
von Neumann and Nash. The approach is that the set Xi of pure strategies xi should
be extended to the set of mixed strategies; then for the game (8)

⟨N, {Xi}i∈N , {fi[x]}i∈N ⟩

existence of situation satisfying the Berge equilibrium condition can be established on a
class of mixed strategies.

For this construct the Borel σ-algebra B(Xi) for every set Xi (i ∈ N) and construct
the Borel σ-algebra B(X) for the set of situations X =

∏
i∈N

Xi. Assume that B(X)

contains all Cartesian products of elements of the Borel σ-algebras B(Xi) (i ∈ N).
In game theory a mixed strategy νi(·) of the i-th player is a probability measure on

the compact set Xi. Consider the definition from [8]. Assume that B(Xi) is a Borel
σ-algebra over a compact set Xi ⊂ Rli . A probability measure is a nonnegative scalar
function νi(·) which is defined on B(Xi) and satisfies the following two conditions:

10) for every sequence {Q(i)
k }∞k=1 of mutually disjoint elements from B(Xi) the

relation
νi(
∪
k

Q
(i)
k ) =

∪
k

νi(Q
(i)
k )

holds. We call this the property of countable additivity of the function νi(·);
20) the equality

νi(Xi) = 1
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takes place. We call this the property of normability.

Hence νi(Q(i)) ≤ 1 ∀Q(i) ∈ B(Xi).
Denote the set of mixed strategies νi(·) of the i-th player by {νi} (i ∈ N).
Let δ(·) be Dirac function. Then a measure of the form δ(xi − x∗i )(dx) is also a

mixed strategy from the set {νi} (i ∈ N). Note that the measure-products ν(dx) =

= ν1(dx1) · . . . · νn(dxn) determined in [13], [14] are the probability measures on the set
X of situations (in pure strategies). Denote the set of probability measures ν(dx) by
{ν}. The measure ν(dx) is called a situation in mixed strategies.

Note that for constructing the measure-product ν(dx) we use the smallest σ-algebra
B(X) over X1 × . . . ×Xn = X such that B(X) contains all Cartesian products Q(1)×
× . . .×Q(n), where Q(i) ∈ B(Xi) (i ∈ N).

By [15], [16] the sets of all possible probability measures νi(dxi) (i ∈ N) and ν(dx) are
weakly closed and weakly compact in itself sets. This means (for {ν}) that from every
infinite sequence {ν(k)} (k = 1, 2, . . .) we can choose a subsequence {ν(kj)} (j = 1, 2, . . .)

such that {ν(kj)} weakly converges to a measure ν(0)(·) ∈ {ν}. In other words, for any
scalar function φ(x) which is continuous on X, we have

lim
j→∞

∫
X

φ(x)ν(kj)(dx) =

∫
X

φ(x)ν0(dx)

and ν(0)(·) ∈ {ν}.
Since φ(x) is continuous, the integrals (mathematical expectations)

∫
X

φ(x)ν(dx) exist.

By Fubini’s theorem we have∫
X

φ(x)ν(dx) =

∫
X1

. . .

∫
Xn

φ(x)νn(dxn) . . . ν1(dx1),

where the order of integration can be changed.

3.3. Mixed extension of the game (8). We put into correspondence to the "game
of guarantees"in pure strategies (8) its mixed extension

⟨N, {νi}i∈N , {fi[ν] =
∫
X

fi[x]ν(dx)}i∈N ⟩. (12)

Here (as in (8)) N is a set of players’ numbers, {νi} is a set of mixed strategies νi(·)
of the i-th player (i ∈ N). In the game (12) each i-th player chooses his own strategy
νi(·) ∈ {νi}. As a result the situation ν(·) ∈ {ν} in mixed strategies is composed. Further
we introduce the payoff function (mathematical expectation) fi[ν] =

∫
X

fi[x]ν(dx) of i-th

player on the set {ν}.
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For the game (12) the situation in mixed strategies νv(·) ∈ {ν} satisfies the Berge
equilibrium condition if

max
νN\{i}(·)∈{νN\{i}}

fi[ν∥νv
i ] = fi[ν

v] (i ∈ N), (13)

where

νN\{i}(dxN\{i} = ν1(dx1) . . . νi−1(dxi−1)νi+1(dxi+1) . . . νn(dxn),

[ν∥νv
i ] = [ν1(dx1) . . . νi−1(dxi−1)ν

v
i (dxi)νi+1(dxi+1) . . . νn(dxn)],

νv(dx) = νv
1 (dx1) . . . ν

v
n(dxn).

For the game (12) the condition (13) determines the analogue of Berge equilibrium
situation xv satisfying (5). Denote the set of situations in mixed strategies νv(·) ∈ {ν}
satisfying (13) by {νv}.

3.4. Properties of situations in mixed strategies satisfying the Berge
equilibrium condition.

3.4.1. Weak compactness in itself of the set {νv}. We establish the weak compactness
in itself of the subset {νv} ⊂ {ν}.

Assume that φ[x] is an arbitrary continuous on X scalar function. Suppose that
the elements ν(k)(·) (k = 1, 2, . . .) of the infinite sequence {ν(k)(·)}∞k=1 belong to the
set {νv}. Then, since {νv} ⊂ {ν}, it follows that {ν(k)}∞k=1 ⊂ {ν}. As {ν} is weakly
compact in itself (see Subsection 3.2) there exists a subsequence {ν(kj)(·)}∞j=1 and a
measure ν0(·) ∈ {ν} such that

lim
j→∞

∫
X

φ[x]ν(kj)(dx) =

∫
X

φ[x]ν0(dx).

Now we prove the validity of the inclusion ν0(·) ∈ {νv}. Assume the contrary. Then
for a rather large j there exists a number i ∈ N and a situation ν̄(·) ∈ {ν} such that
fi[ν̄∥ν

kj
i ] > fi[ν

kj ]. This inequality contradicts the inclusion {ν(kj)(·)}∞j=1 ⊂ {νv}.
Thus for the game (12) we obtained weak compactness in itself of the set of situations

{νv}.
Compactness of the set f [{νv}] =

∪
ν(·)∈{νv}

f [ν] (n-vector f = (f1, . . . , fn)) in the

criteria space Rn can be established in the same way.

3.4.2. Auxiliary property 1. Consider scalar functions (9) φi(x, z) = fi[x ∥ zi]−fi[z] and
φ(x, z) = max

i∈N
φi(x, z). According to Subsection 2.3 it follows that if fi[x] (i ∈ N) are

continuous and the set X ⊂ Rl of situations x is compact, then φ(x, z) is determined
and continuous on X ×X.
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We have φi(x, z) ≤ φ(x, z) = max
i∈N

φi(x, z). Integrating the both parts of this

inequality by an arbitrary measure-product µ(dx)ν(dz), where µ(·) ∈ {ν} and ν(·) ∈ {ν},
we get ∫

X×X

φi(x, z)µ(dx)ν(dz) ≤
∫

X×X

max
i∈N

φi(x, z)µ(dx)ν(dz)

for all i ∈ N . Therefore

max
i∈N

∫
X×X

φi(x, z)µ(dx)ν(dz) ≤
∫

X×X

max
i∈N

φi(x, z)µ(dx)ν(dz).

Taking into account the form of φi(x, z) from (9) we have

max
i∈N

∫
X×X

(fi[x ∥ zi]− fi[z])µ(dx)ν(dz) ≤
∫

X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ(dx)ν(dz). (14)

Remark. The inequality (14) is a generalization of the well-known property: maximum
of sum do not exceed sum of maxima.

3.4.3. Auxiliary property 2. Now consider an auxiliary two-person zero-sum game

Γ2 = ⟨{1, 2}, {X1 = X,X2 = X}, φ(x, z)⟩.

In the game Γ2 the set of strategies x of the first player is X1 = X, the set of strategies
z of the second player is X2 = X. The payoff function φ(x, z) of the first player is of the
form (9). The aim of the first player is to choose his strategy x ∈ X such that to get the
largest possible value of the payoff function φ(x, z). The aim of the second player is to
choose a strategy z ∈ X such that the function φ(x, z) takes the least possible value.

The solution of the game Γ2 is a saddle point (x0, z0) ∈ X×X. It satisfies the relation

φ(x, zv) ≤ φ(x0, zv) ≤ φ(x0, z)

for ∀x ∈ X and ∀z ∈ X.
Now assign a mixed extension

Γ̃2 = ⟨{1, 2}, {ν}, {µ}, φ(ν, µ)⟩

for the game Γ2.
Here {ν} is the set of mixed strategies ν(·) of the first player,{µ} = {ν} is the

set of mixed strategies µ(·) of the second player, the payoff function (mathematical
expectation) of the first player is φ(ν, µ) =

∫
X×X

φi(x, y)µ(dx)ν(dy).

The solution of the game Γ̃2 is a saddle point (ν0, µv), where (ν0, µv) is defined by
the inequalities

φ(ν, µv) ≤ φ(ν0, µv) ≤ φ(ν0, µ) (15)

for all ν(·) ∈ {ν} and µ(·) ∈ {ν}. This solution is called a saddle point in mixed strategies
for the game Γ2.
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Glicksberg proved in 1952 the theorem of existence of Nash equilibrium in mixed
strategies for a non-cooperative game with n ≥ 2 players [17]. For the special case of a
non-cooperative game of n ≥ 2 players, namely for a two-person zero-sum game Γ̃2, this
theorem implies the following proposition.

Proposition. Suppose that the set X ⊂ Rl is compact and the payoff function of the
first player φ(x, z) is continuous on X ×X in the game Γ2. Then there exists a solution
(ν0, µv) satisfying (15) in the game Γ2, i.e. there exists a saddle point in mixed strategies
for the game Γ2.

Taking into account (9) we can present the inequalities (15) as∫
X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ(dx)ν
v(dz) ≤

∫
X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ
0(dx)νv(dz) ≤

≤
∫

X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ
0(dx)ν(dz) (16)

for all µ(·) ∈ {ν} and ν(·) ∈ {ν}. Setting ν(dz) = µ0(dx) the equality

φ(µ0, ν) =

∫
X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ
0(dx)ν(dz)

implies
φ(µ0, ν) = 0.

Hence, taking into account (16) we obtain∫
X×X

max
i∈N

(fi[x ∥ zi]− fi[z])µ(dx)ν
v(dz) ≤ 0.

By (14) we get

max
i∈N

∫
X×X

(fi[x ∥ zi]− fi[z])µ(dx)ν
v(dz) ≤ 0,

max
i∈N

 ∫
X×X

fi[x ∥ zi]µ(dx)νv(dz)−
∫

X×X

fi[z]µ(dx)ν
v(dz)

 ≤ 0.

Then ∫
X×X

fi[x ∥ zi]µ(dx)νv(dz) ≤
∫

X×X

fi[z]µ(dx)ν
v(dz) ∀µ(·) ∈ {ν}.

Taking into account normalization of probability measure µ(·) (see Subsection 3.2) we
have

∫
X

µ(dx) = 1. Then the previous inequality implies∫
X×X

fi[x ∥ zi]µ(dx)νv(dz) ≤
∫

X×X

fi[z]µ(dx)ν
v(dz) ∀i ∈ N.
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Using notations from (12), taking into account fi[µ ∥ νi] =
∫

X×X
fi[x ∥ zi]µ(dx)νv(dz),

we get

fi[µ ∥ νv
i ] ≤ fi[ν

v] (i ∈ N),

i.e. condition (13) holds.
Thus, if the sets Xi ⊂ Rli (i ∈ N) are compact and the payoff functions fi[x] of every

i-th player are continuous on X in the game (8), then there exists a situation in mixed
strategies νv(·) ∈ {ν} satisfying Berge equilibrium condition (5) in the game (8).

4. Existence

4.1. The notion of strong guaranteed Berge equilibrium in mixed strategies.
In this section we present the main result of present paper. We establish existence of a
strong guaranteed Berge equilibrium in mixed strategies for the game

ΓN = ⟨N, {Xi}i∈N , Y X , {fi(x, y)}i∈N ⟩.

For this we assign a quasimixed extension

Γ̃N = ⟨N, {νi}i∈N , Y X , {fi(ν, y)}i∈N ⟩

to the game ΓN .
Recall that in ΓN the sets Xi ⊂ Rli (i ∈ N) are compact ones. N = {1, . . . , n} is the

set of players’ numbers in the game Γ̃N (as in ΓN ). In Γ̃N every i-th player (i ∈ N)

can use both pure strategies xi ∈ Xi ⊂ Rli (i ∈ N) (as in ΓN ) and mixed strategies
(probability measures) ν(·) determined on the Borel σ-algebra B(Xi) over the compact
set Xi ⊂ Rli (see subsection 3.2). Y X is the set of uncertainties y(x) : X → Y , Y ⊂ Rm.
The payoff function of the i-th player is of the form

fi(ν, y) =

∫
X

fi(x, y)ν(dx). (17)

Similarly to Subsection 2.1, we introduce the notion of a strong guaranteed equilibrium
(ν̄V , f̄s) ∈ {ν}×Rn (f = (f1, . . . , fn)) in mixed strategies for the game ΓN . For this we
use three stages:

Stage 1. Taking into account the relation

min
y∈Y

fi(x, y) = fi(x, y
(i)(x)) = fi[x] ∀x ∈ X (i ∈ N)

we construct n vector-functions y(i)(x) ∈ Y X .
Stage 2. For the non-cooperative "game of guarantees"of n persons

⟨N, {νi}i∈N , {fi[ν]}i∈N ⟩, (18)
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where the payoff function of the i-th player is defined by the equality fi[ν] =
∫
X

fi[x]ν(dx)

(i ∈ N), we find a set {νv} ⊂ {ν} of situations in mixed strategies νv(·) such that

max
νN\{i}(·)∈{νN\{i}}

fi[ν∥νv
i ] = fi[ν

v] (i ∈ N). (19)

Here the measure-product νN\{i}(dxN\{i}) = ν1(dx1) . . . νi−1(dxi−1)νi+1(dxi+1) . . . νn(dxn),
i.e. νv(·) satisfies the Berge equilibrium condition in the game (18).

Stage 3. For the n-criteria problem

⟨{νv}, {fi[ν]}i∈N ⟩

construct a Slater maximal solution ν̄v(·) ∈ {ν} such that for any νv(·) ∈ {νv} the
system of strict inequalities

fi[ν] > fi[ν̄
v] = f̄ si (i ∈ N)

is inconsistent.
Then the couple (ν̄v, f̄ s = (f̄ s1 , . . . , f̄

s
n)) is called a Berge strong guaranteed equilibrium

in mixed strategies for the game ΓN . The situation in mixed strategies ν̄v(·) is called a
guaranteeing situation; n-vector f̄ s is called a vector guarantee.

4.2. Proof of existence. Assume that the following conditions hold for the game ΓN :

(10) the sets Xi ⊂ Rli (i ∈ N) and Y ⊂ Rm are compact and Y is convex as well;
(20) the payoff functions fi(x, y) (i ∈ N) are continuous on X × Y (X =

∏
i∈N

Xi);

(30) for any x ∈ X the payoff functions fi(x, y) (i ∈ N) are strictly convex in y ∈ Y ,
i.e. for all λ = const ∈ (0, 1) and y(j) ∈ Y (j = 1, 2) the following strict
inequalities hold

fi(x, λiy
(1) + (1− λi)y

(2)) < λifi(x, y
(1)) + (1− λi)fi(x, y

(2)) (i ∈ N).

We prove that fulfillment of conditions 10−30 provides existence of strong guaranteed
equilibrium of Berge in mixed strategies in the game ΓN . In other words, we are going
to prove that conditions 10 − 30 yield existence of a couple (ν̄(·), f̄ s) satisfying the
requirements of Stages 1-3 from Subsection 4.1.

Stage 1. By Subsection 1.1 fulfillment of conditions 10 − 30 yields existence of a
continuous m-vector function

y(i)(x) : min
y∈Y

fi(x, y) = fi(x, y
i(x)) = fi[x] ∀x ∈ X (i ∈ N). (20)

Note that the functions fi[x] = fi(x, y
(i)(x)) (i ∈ N) are continuous on X (as a

superposition of continuous functions fi(x, y) and y(i)(x)). By (20) for every x ∈ X

we have
fi[x] ≤ fi(x, y) ∀y ∈ Y (i ∈ N). (21)
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Integrating the both parts of the inequality (21) by an arbitrary measure ν(·) ∈ {ν} we
get

fi[ν] =

∫
X

fi[x]ν(dx) ≤
∫
X

fi(x, y)ν(dx) = fi(ν, y) ∀y ∈ Y (i ∈ N). (22)

Due to the inequality (21) we can assign the "game of guarantees"

Γg = ⟨N, {Xi}i∈N , {fi[x]}i∈N ⟩

to the game ΓN .
Since for all y ∈ Y we have

fi[x] ≤ fi(x, y) (i ∈ N),

then the vector guarantee f [x] = (f1[x], . . . , fn[x]) corresponds to each situation x ∈ X

in Γg. In the same way, due to the inequality (22) in the "game of guarantees"in mixed
strategies

Γ̃g = ⟨N, {νi}i∈N , {fi[ν] =
∫
X

fi[x]ν(dx)}i∈N ⟩

the vector guarantee f [ν] = (f1[ν], . . . , fn[ν]) corresponds to each situation in mixed
strategies ν(·) ∈ {ν}.

Since inequalities (21) and (22) hold for all i ∈ N then it follows that the guarantees
f [x] and f [ν] are the "smallest". This is a main reason to use the term "strong
guaranteed".

Stage 2. Since the sets Xi (i ∈ N) are compact and the function fi[x] is continuous on
X =

∏
i∈N

Xi (see conditions 10 − 20 and Stage 1), taking into account Subsection 3.4.3,

there exists a situation in mixed strategies νv(·) satisfying the requirement of Berge
equilibrium (19) in the game Γ̃g. Therefore the set {νv} ̸= ∅. By Subsection 3.4.1 the
set {νv} is weakly compact in itself, then the set of values of payoff functions

Φ = f [{νv}] =
∪

ν(·)∈{νv}

f [νv] (heref [ν] = (f1[ν], . . . , fn[ν])) (23)

is a compact set in Rn (see the proof in Subsection 3.4.1).
Stage 3. Let αi = const ≥ 0 and

∑
i∈N

αi > 0. Consider a linear convolution
∑
i∈N

αifi

determined on Φ (see (23)). Since
∑
i∈N

αifi is continuous on Φ and taking into account

Weierstrass theorem we get that there exists a constant n-vector f̄s = (f̄s1 , . . . , f̄
s
n)) ∈ Φ

such that max
f∈Φ

∑
i∈N

αifi =
∑
i∈N

αif̄
s
i . Due to Karlin’s Lemma [19] the alternative f̄ s is

maximal by Slater in the n-criteria problem

⟨Φ, {fi}i∈N ⟩,

i.e. for any f ∈ Φ the system of inequalities

fi > f̄ si (i ∈ N)
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is inconsistent. Taking into account the construction way of the set Φ (see (23)) one can
state that there exists a situation ν̄s(·) ∈ {ν} such that f̄s = f [ν̄s]. This situation
in mixed strategies ν̄s(·) is Slater maximal in n-criteria problem ⟨{νv}, {fi[ν]}i∈N ⟩.
According to the definition from Subsection 4.1 the couple (ν̄v, f̄ s) is a Berge strong
guaranteed equilibrium in mixed strategies for the game ΓN .

Thus, if for the game ΓN the following conditions

− the sets Xi ⊂ Rli (i ∈ N) and Y ⊂ Rm are compact;
− the set Y is convex;
− the scalar payoff functions fi(x, y) (i ∈ N) are continuous on X × Y ;
− for any x ∈ X the payoff functions fi(x, y) (i ∈ N) are strictly convex in y ∈ Y

hold, then there exists a Berge strong guaranteed solution (BVSGS) in mixed strategies
in the game ΓN .

Remark. The "game sense"of the notion of BVSGS is as follows. Every situation has
a corresponding vector guarantee. Among these guarantees we have to select the ones
which correspond to the Berge equilibrium situations. Then from such guarantees a
Slater maximal guarantee (with respect to the selected guarantees) has to be chosen.
The couple (the equilibrium situation and the corresponding vector guarantee) is offered
as a "good"solution (BVSGS) for the game ΓN . In fact, whatever uncertainty is realized
in the game ΓN , the players (using the situation from BVSGS) provide themselves "the
largest"guaranteed payoffs. For each player this guaranteed payoff coincides with the
corresponding component of the vector guarantee.

5. Conclusions

In this paper two new basic results of game theory have been established. These results
concern Berge equilibrium (see the review [18]).

First, for the non-cooperation game

Γg = ⟨N, {Xi}i∈N , {fi[x]}i∈N ⟩,

where N = {1, . . . , n} is the set of players’ numbers, the set of strategies xi of the i-th
player is Xi ⊂ Rli (i ∈ N), the situations x = (x1, . . . , xn) ∈ X =

∏
i∈N

Xi ⊂ Rl, the

i-th player payoff function fi[x] is determined on X, the following proposition have been
obtained.

Proposition 1. If Xi are compact and fi[x] are continuous on Xi (i ∈ N) then in the
game Γg there exist the situations in mixed strategies ν̄v(·) ∈ {ν} satisfying the Berge
equilibrium condition (19) such that ν̄v(·) is Slater maximal with respect to all other
situations satisfying the Berge equilibrium condition.
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Second, we considered a non-cooperation game of n persons under uncertainty

ΓN = ⟨N, {Xi}i∈N , Y X , {fi(x, y)}i∈N ⟩,

where N , xi, Xi, x, X are the same as in Γg, Y X is the set of uncertainties y(x) : X →
→ Y ⊂ Rm, on the set X×Y the payoff function fi(x, y) of any i-th player is determined.

In subsection 4.1 for the game ΓN we have introduced the notion of Berge strong
guaranteed equilibrium in mixed strategies.

Proposition 2. Let in the game ΓN the following conditions

− the sets Xi ⊂ Rli (i ∈ N) and Y ⊂ Rm are compact;
− the set Y is convex;
− the scalar payoff functions fi(x, y) (i ∈ N) are continuous on X × Y ;
− for any x ∈ X the payoff functions fi(x, y) (i ∈ N) are strictly convex in y ∈ Y

hold, then there exists a Berge strong guaranteed solution in mixed strategies in the
game ΓN .
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Существование равновесия по Бержу в смешанных стратегиях
Для бескоалиционной игры n лиц при неопределенности формализуется

понятие гарантированного решения, основанного на подходящей модифи-
кации максимина и равновесия по Бержу. Получены условия существова-
ния гарантированного решения в классе смешанных стратегий (вероят-
ностных мер).

Ключевые слова: вероятностные меры, смешанная стратегия, слабая компакт-
ность, гарантия, равновесие по Бержу-Вайсману, равновесие по Нэшу, максимин.


