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1. INTRODUCTION. THE GENERAL STATEMENT OF THE PROBLEM

The present paper is devoted to study some model boundary wvalue spectral
problems arising in theory of composite materials. Such materials consist of many
thin layers of materials with different properties that make possible to obtain some
extra characteristics of composite material. Almost 40 years ago Russian scientist Victor
Veselago had an idea for a material with negative index of refraction [1]. Such composite
material with a lot of amazing attributes was obtained experimentally by the group of
American physics at the beginning of XXI century (see [2], [3]). The negative refraction
provides some effects that destroy the classical theory of electromagnetics. For example,
superlens effect allows imaging of details finer than the wavelength of light used. Another
possible application is effect of cloaking devices: at a given frequency, a spherical volume
could be cloaked by means of a spherical shell within which the electric permittivity
and magnetic permeability vary in certain prescribed ways. At the given frequency, any
object contained within the spherical volume would be invisible to outside observers (see
[4], [5]). Obviously, such phenomenons need for the physical and mathematical modeling,.
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We attempt to study some spectral boundary value problem generated by physical
statements from [4], [5]. We consider the following general statement. One have to find
the unknown functions ug(z) (k = 1,2,3) (electromagnetic intensity) in given arbitrary
smooth domains 2 that satisfy equations

—aAui(x) = Aui(z), =€ Q, (1)
—BAus(x) = Aug(z), = € Qo, (2)
—aAuz(z) = Aug(z), =z € Qs, (3)
and boundary conditions
0 0
w(@) = ux(2), a3 @) =55 @), wel, (4)
0 0
ug(x) = us(x), %(m) = a%(w), x €Iy, (5)
ug(z) =0, x € Is. (6)

We suppose that domain €2 situates inside 2o including in 3, and I'y is common
boundary of €7 and 9, I'y is common boundary of 25 and €23 with outward normal
vector 7. The requirement of unboundedness of Q3 we substitute for condition (6),
where I's is sufficiently large outward boundary. The number A € C is unknown spectral
parameter, complex numbers o, f € C (0 < arga < arg f < 7) are given as we consider.
Notice that given statement corresponds to problems from [4], [5] for concentric rings
Q, where Q3 is unbounded and a =1, = -1 +1ic (0 <e << 1).

In the present work we introduce the first step to study the problem. We prove that
problem (1)—(6) has the discrete spectrum with unique limit point at infinity that consist
of isolated eigenvalues of finite multiplicity { A, }72; situated in the sector arg f < arg A <
arg «v. If domains 2, are one-dimension segments then for any given § > 0 there exists the
number R(6) > 0 such that for |A\| > R(§) we have no eigenvalues in the sector arg a+4§ <
arg A < arg 8 — 4. In polar coordinate system we have a branch of eigenvalues tending
asymptotically to some parabola with axis of symmetry ¢ = arg 8 and two branches of
eigenvalues tending asymptotically to another parabola with axis of symmetry ¢ = arg a.

2. PROPERTIES OF THE PROBLEM IN ARBITRARY DOMAINS Qk

Suppose that element u = (u1(x);ua(z);ug(x)) € E := La(Q1) & La(Q2) @ La(Q3) is
a solution of (1)—(6). Left-hand-sides of (1)—(3) determine the linear operator A in E.
If we set it on the elements u with properties: uy(z) € C*(Q) (k = 1,2,3) and ug(z)
satisfy boundary conditions (4)—(6), then using first Green’s formula we obtain

(Au,u)p = —a/Aululdﬁl - B/Auzmng — a/AU31L;3dQ3 =
Ql QQ Q3
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- a/|Vu12d91 + ﬁ/|qu2dQ2 + a/VU3|2d93—

aul

ou ou ou
o ——ur|r, dl'y + 5/ 2172|F1 dl'y — ﬂ/ 2172|F2 dl's + « 3173|F2 dl'y—

an
1)
9
s / S, iy = [ (Vw8 [ [Fuaf a0+ o [0 a0,
o 2 o

Therefore (Au, u) E = cia+co3, where ¢, co > 0. So, the numerical range of the operator
A is the sector of complex plane, forming by polar axes ¢ = arga and ¢ = arg 5. In
particular, the case a,3 > 0 corresponds to nonnegative operator. If a > 0, 8 < 0
(superlens without dissipation of energy) then we have a symmetric operator.

To prove the discreteness of the spectrum let us change the spectral parameter A to

A
the parameter = — + 1. Then equations (1)—(3) can be rewritten as

g
—Aug(z) + u2(x) = pua(x), x € Qo, (7)
—Aug(z) +up(z) = m_ﬁlﬂluh(x), reQ (k=1,3). (8)
The following Green’s formulas are valid:
a/(—Aul + )T A = a/(Vul Vi + ) dQ — a/ %ulm\pl FINE
& & r,

B/ —Auy + uz)n2 dQdy = 5/VU2 Vo + uatpz) dQa+
ou ou
+6/ 2%\& dl'y — 5/ 2%\& dl's;

a/(—Aug + u3)3 dQ3 = a/(Vug - Vns + usnz) dQs+
Q3

(9’U,37 6”37
+Oé/8n773|1"2 dFQ—Oé/an’l’]gh"S ng

Suppose now that

n=(m;ne;ns) € Fo:={m, € H' () : mlr, = n2lr,, nolrs = mslrs, mslr, = 0}

and the element u = (u1;ug;u3) € E is a solution of spectral problem. Then we have
the identity

(Bp—1 +a)/u1771d§21 + Bu/mnngg +Bu—1+a) /u;gnngg =
Ql QQ QB
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= a(u1,m) g a,) + Bluz,m2) 1y + a(us, 13) ()

As the spaces H'(Q;) (with the standard inner products) are boundedly (compactly)
imbedded into Lo(k) (k = 1,3), there exist positive compact in Ly(£2;) operators Vj
which satisfy the identities

/Ukndek = (Vi M) i,y (0
Q

On the base of these formulas we have

Bu(u,n)p = (cur+(1—a)Viur, m) g, +68(u2, n2) i1 (q)+(aus+(1—a) Vs, 03) i1 (s
Hence
p(u,n)e = (Bu,n) k),
where B = diag {%Iﬁ—(l—a)vl; I; %13—1—(1—05)‘/},} in E. As the space Fy is compactly

imbedded into E (see, for e.g. [6]), there exists positive definite in E operator Ay such
that (Bu,n)r, = (AoBu,n)g for any element n € Fy. Therefore p is an eigenvalue of
unbounded in E operator AyB.

It is easy to show that if é — B ¢ R_ then the operator B is boundedly invertible.
o

In this case the numbers p are characteristic numbers of compact operator B_IAE L
Therefore they form the countable set of values with unique limit point at infinity. The
same property is valid for the eigenvalues A = Su — 1.

Let us consider separately the case a = 1. We obtain B~ = diag {811; I»; BI3}.
If additionally 3 = 1 then B~' = Z. Therefore the spectrum of the problem is the
set of positive eigenvalues of the operator Ag. It tends to infinity, and the set of
eigenfunction form the orthonormal basis in F (analogous result in the space E equipped
with equivalent inner product is valid for 5 > 0).

If 5 = —1 then the operator B! = J = J* = J~! is the operator of canonical
symmetry in F/, and the operator B*1A5 Lis J-positive in the space of M. Krein with
the indefinite inner product [u,n] = (Ju,n) . One can prove that the operator J.A, L has
infinite dimensional positive and negative maximal invariant subspaces Li. So, in these
spaces the operator has J—orthonormal systems of eigenelements {e}7°,, [ei, ei] =
+1, with corresponding branches of positive and negative eigenvalues of the operator
T Ay ! with a unique limit point at zero (see, e.g., [7], p. 41-42). Therefore the problem
has branches of positive and negative eigenvalues with limit points at +oo.

The problem with 5 ¢ R is rather difficult. To show it we can write the matrix form
of the operator

B1AL 1A 0
AoB= | Ax Ago Aas
0 B 1Az 1Az
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The spectrum of the boundary value problem (1)—(6) coincides with the spectrum of this
operator. Here we have unbounded operator coefficients A;; without any subordinates,
so the classical approaches are not effective to study the spectral properties.

3. CHARACTERISTIC EQUATION IN ONE-DIMENSIONAL CASE

Let argar < argff and Q1 = (—R;—1), Q2 = (=1;1), Q3 = (I; R) be three intervals

then problem (1)—(6) can be rewritten in the form

—auf(z) = My (), =€ (=R;-1), 9)
— Buly(z) = Muz(z), x € (=L1), (10)
—aus(x) = Mug(z), x€ (LR), (11)
u1(0) = u2(0), ug(l) = us(l), (12)
auj(=1) = Buy(=1),  Puy(l) = aus(l), (13)
u1(—R) = us(R) = 0. (14)
Let us consider two auxiliary problems
" A " A
{ul(x) = aul(x), x € (—R;—1), {u3(x) = au;g(x), z € (I;R), (15)
ui(—R) =0, uz(R) =0
Their solutions are
ui(x) = dj sin \/g(x—FR), uz(x) = dgsin \/g(x—R). (16)
Therefore
u (_g _ \Ectg \/E(R —1) = m(\), Zig = —\/gctg \/E(R —1) = —m(Ai.?
Using this notations we obtain the problem for uy(z) : "
—uf(z) = %Z@(l’), x € (0;1), (18)
Bub(—1) = au’ (=) = ami(N)ui(=1) = am(N)uz(-1), (19)
Buy(l) = aus(l) = amz(N)us(l) = —am(N)us(l). (20)

Equation (18) has the solution us(z) = ¢; sin \/X:(:—i—CQ cos \/ga: So, boundary conditions

(19)—(20) imply
llcos\/iH—czsm\/»]—am [clsln\/>l+czcos\/>]
llcos\/> CQSIH\/>]:—O£’I7’L [Clsm\/>l+62c:os\/>]

5”2 =p

™| >

||
™
™| >
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It is linear homogeneous system of two equation with unknown constants ¢; and ¢y which

has nontrivial solutions if and only if

dot — Acos\/7l+ozm sm[l Asm[l—am cosfl
\/ﬁjcos\/gl—kam()\)sm\/%l - )\sm\/>l+ozm cos\/>l

Hence

A A a A\
2 <\/B>)\cos \/;l + am(\) sin \/;l> (\/ﬁix\sm \/;l — am(\) cos \/;l> =0. (22

If sin \/gl = 0 then (22) implies that either A = 0 or m(A) = 0. One can check that

A = 0 is not eigenvalue. Therefore

P aan -

So, we obtain VA = L( + 7n) (n € Z). On the other hand by the assumption we
have VA = Tfﬂ'k (k € Z). It can not be possible since arg a # arg 3, hence sin \/%l #0.

Equation (22) implies two characteristic equations

A o A
A) = ctg \/;l—l—ﬂﬁctg\/;(R—l) =0, (23)
A o A
——tg\/;l—i—ﬂﬁctg\/;(R—l):O. (24)

These equations can be reduced to the problem of zeros of some entire functions, so the
spectrum is discrete and it has the unique limit point at infinity.

4. LOCALIZATION OF THE EIGENVALUES WITH GREAT ABSOLUTE VALUE

Let us study the case |A\| — oo. To this aim we divide the numerical range of the
operator A to the three domains V, := {z € C: arga < argz < arga + 9}, Vp:={z €
C: arga+6 <argz <argf—6}, Vg:={2€C: argf —0 < argz < arg 3}, where
6 > 0 is a given little number.

For |A\| = oo inside the domain Vp U V, we have

ctg \/él — . (25)

Analogously, inside the domain Vy U V3 we have

ctg \/z(R —1) = —i. (26)

Lemma 1. There ezist such a number R(5) > 0 that there is no solutions of (23), (24)
in the domain Vg for |\ > R(9).
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Proof. Indeed, let us suppose that we have infinitely many solutions {\,,} of (23)
situated in the V{. Using (25), (26) we obtain

- fa. VB
i) —mi—y/=i=i————#0 (n— ), 27
(Any) 3 NG ( ) (27)
since arg aw < arg 3. It is impossible as f(\,,) = 0. Analogous result is obviously valid
for (24). O

Using asymptotic (25) inside the domain Vp U V,, we obtain that (23) and (24) are

close to equation
~ A
fi\) =i+ \/gctg \/;(R—Z) =0. (28)
Inside the domain VU Vg we have asymptotic (26), therefore equations (23) and (24)
Fa1(A) = ctg \/75 - \/> (29)
~ A
fgg()\) 1= ctg \/;l — \/EZ =0. (30)

Union (29), (30) can be reduced to the unique equation. Suppose that

Fa1(A) - Faa(N) = ctg? \/Kl — ctg \/Xl <\/EZ + \/§Z> 1=

cos \/> sin \/>l 2COS\/>ZSIH\/>Z ila+ B
- sm2\/gl sin \/gl < \/7> ooy

A, ila+pB)
ctg \/;2l = ovad (32)

All of limit equations (28), (32) can be reduced to the form

are close to

It is equivalent to

ctgz = a+ b, a,b e R. (33)

Using th ¢ we have ) _ g 2% 1 1) = (a+ib)(e¥= — 1
sing the exponent we have ek +1ib or i(e** +1) = (a+ib)(e* —1).

’ b
Hence 2% = Cm. Finding the logarithm we obtain the countable set of solutions
a+i(b—
1 a+i(b+1) i, |a+i(b+1) .

= —arg —————~ ——In|——=| =4 —iB €7 (A, BeR).
Zn 2arga+i(b_1)+7m 2na+i(b—1) +7m —iB, n (A, )

(34)
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Therefore corresponding solutions of (28) have the form

az? a rlal((Ay + mn)? — B?) |a|B1 (A1 + mn)
My = oy = — Lo — 2 : N. (35
®-07 il @17 Twep e @
All these points are situated on the branch of parabola
Im\)2(R —1)? B?

dla|B} (R—1)*
rotated through the angle arg a.. Notice that there exist some number N; such that for
n > Nj these points are situated in V. For R — [ — oo parabola (36) stretches along its
axis of symmetry and coincides with the ray ¢ = arg a in limit. This conclusion argues
the hypothesis that the problem with unbounded domains has the continuous spectrum
and it fills all the polar axis ¢ = arg a. This problem will be discussed in the further
articles.
Analogous solutions of (32) have the form

o _ B2 B ll((As+mn)? — B3) ) |8IBa(As + )
R ENE] a2 2
All these points are situated on the branch of parabola
(Im N> |8|B3
|8 B3 4z

, neN. (37)

Re ) =

(38)

rotated through the angle arg 5. Obviously, there exist some number Na such that A, €
Vg for n > No.

All of the limit equations are close to solutions of characteristic equations (23), (24)
for A = oo. More precise, for sufficiently large n solutions of characteristic and limit
equations are as close as greater the number n.

Lemma 2. For given v > 1 and the sequence of positive numbers r, =n~"7 — 0 (n —
o0) there exists such a number N, > N1 > 0 that for all n > N, in the neighborhood
|IA—An| < r of each solution A, of (28) we have a unique solution of (23) and a unique
solution of (24).

Proof. Let A\, (n > Njp) are solutions of (28) situated inside the domain V,. To prove
the lemma we can use the theorem of Rouche (see, e.g., [8], p. 131). It is sufficient to
prove the inequality

AN F20) = FEN] < 1] (39)
for all A € C such that |\ = A,| =71, =n"7 (n > Ny > Ny).
Indeed, function ctg \/g (R — 1) is analytic inside Vj, so near \,, we have

A An (R=D\ =) 2
ct —(R—-1)=ct —(R-1) — + O(IA =A%), (40
B\ QR =t R e e FOA ) (@
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Using the assumption f1 = 0 we obtain

e |—‘Z+\/ ctgv R—1)|
[a / (B =D =) 212
=i+ ct R—1) + O(|A = Anl9)]
2\/@’)\ - sin? ( —1)

2
(R=1)IN= A\ 00— A :< const - 7y, —07“2) _
>(2m.sm2\/§<3z> O(A= A >) Tt~ O

=c-n 2 4on M%) (n— oo, y>1). (41)

Here |sin? /22(R — )| > 0 is a fixed number, [v/A,| = ¢ /(4 + mn)% + B2 according
o (34), (35).
On the other hand

|f1(A) f2

(ctg\/>l+\/7ctg\/> )(—tg\/XlJr\Fctg\/g(R—z))_
_(z—k\/ictg\/i ) |—|\/7€tg\/> |Ctg\/> tg\/> 2i| <
< <const+ WACT;;’)Z: — +O(ri)> <ctg \ﬁz — i+ |tg \/ng'l) . (42)

We have

o /)\l ' ‘.e2“\/§+1 ' P . P (43)
ctgy [ Zl—i=li—F—— —il=—F= —5 .
,8 eQzl\/; 1 |€21l\/; . 1’ He21l\/;| . 1’

For A € V, we have Im\/% < 0. By the assumption |A — A\,| =7, — 0 and X € V,,

soIm\/§<Im %4—5” < 0 for some 0 < g, = 0 (n — 00). If\/%:a—ibthen
arg 8 > arg o imply b > 0. So, using (34), (35) we obtain

Im \//\’? =Im <\/¥ \/g> = Im (¢c(A1+mn+iB1)(a—ib)) = —c(A1+7mn)b+caBy, ¢ > 0.

(44)
Therefore

]exp(2z’l\/§)\ = exp(—2{Im \/é) > exp(—2{Im \/g 2ey,) =
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= exp(—2l(—cbmn — cbA1 + caB + €,,)) > c1e®", c1, c2 > 0. (45)

So, for |A — A\, | =, — 0 there exist constants c¢1, ¢o > 0 not depending on the number
n such that

[ A ) 2
For the same A we have

2il, /2
A e B -1 2 2 2
tg\/lki|:|iA+i|: - < - < — . 4n
N N N on 1
B 203 |€21l\/; L |€21l\/;| L ae +

As exponent increases to infinity faster then any power function we really can find such

a number N, that

~ 2 2 o o~y 7y
AR =T < const (2 2 ) < en ol 1) < ROV
(48)
forn > Ny and A = A\y| =7, =n77. O

Lemma 3. For given v > 1 and the sequence of positive numbers r, =n~" — 0 (n —
00) there exist such a number M., > No > 0 such that for all n > M., in the neighborhood
|IA— A\n| < 7 of each solution A\, of (29) we have a unique solution of (23) and in the

neighborhood |A — \,| < 1, of each solution A\, of (30) we have a unique solution of
(24).

Proof. We prove only the first part of the theorem connected with the equations (29)
and (23). The second part can be proved analogously.

Let A, (n > N) are solutions of (29) situated inside the domain V. By the theorem
of Rouche (see, e.g., [8], p. 131) it is sufficient to prove the inequality

1100 = a1 = | ety Am 1)+ [5il < e fgz -\ = 1Pl @)

for all A € C such that |\ — \,| =7, =n"7 and n > M, > N».

Indeed, function ctg \/gl is analytic inside Vg, and we have

ctg \/Kl — ctg \/zl— A=) o(a— anl?). (50)
38 B ayBx, -sin? /291

Using the assumption fgl()\n) = 0 we obtain

l()‘ — )‘n)

- +O(IA = M) >
2/ B\, - sin? %"l

[far (M) = |
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> ial
VA, - sin? ,/%"l

=en " O™ =en T o(n™Th) (n— o0, ¥ >1). (51)

t-r
A=A = [O(A = An?)| = ——— T O(r2) =
=l =00 = M) = B 00

Here |sin? 1/%"l| > 0 is a fixed number, |\/A,| = ¢ /(A + mn)2 + B2 according to (34),
(35).
On the other hand

2i(R—1),/2
A e a4+ 1] 2 2
lctg /= (R=1)+i| = |i————+1| = < )
. A . A : A
V o ezz(R_z)\/g . - e-m(R-l),/a‘ ’6_21(}2_1),/5‘ B } |
52
For all A,, € V3 we have Im 4/ %" > 0. By the assumption |\ — \,| =7, =n~7 — 0 and

A€ V3, s0 Im\/§>lm\/%"—5n > 0 for some 0 < &, = 0 (n — o0). If\/g:a—l—ib
then arg 5§ > arg a imply b > 0. So, using (34), (35) we obtain

Im \/27 =Im <\/§ \/E) = Im (¢(A+7mn+iB)(a+ib)) = c(A+mn)b+caB, ¢ > 0.

(53)
Therefore

lexp(—2i(R )\/7)]—exp —lIm\/7>eXp —lIm\/i 9Re,) =

= exp(2(R — I)(cbrn + cbA + caB — e,,)) > dye®™.  (54)

for some dy, d2 > 0. Finally, we can find such a number M, that

a0 = 1[5t 20 i < iy < en o) < a0, 69

for [\ = Ap| =rn =177 and n > M,,. O

5. SOME ASYMPTOTIC FORMULAS FOR THE LIMIT EQUATIONS
Now, let us consider the interesting special case
a=1, /B=i+e (B=-1+¢e>+2e), e—0. (56)
We can rewrite the limit equations (28), (32)

ctg (ﬁ(R - l)> =1 e, (57)

2 2

21 € 2 +¢&3 £
t A =— ' R —— -+
cg<fi+€> 2(52+1)+Z2(52+1) 5 + i€, (58)




258 V. |. Voytitsky, D. A. Zakora
If z = V/A(R — ) then we obtain by the formula (34)

2 2
anz+wn_2+i<;—52>+o(52), es0 (n=0,1,2,..). (59

Let us define u,, := % + mn, then we have asymptotic formula for the solutions of (57)

Anl(e) =

2 1 2 1
& [ 2 22Un + i(eun — €2uy,) | + o(e%). (60)

(R—12 (R—12|™ ° 1
For e = 0 we have the branch of positive eigenvalues

7['2(% +n)?

M(0) = ==

(61)

If € increases then all this values move asymptotically in upper complex half plane along
some parabolas, and its shift is as big as the number n. By formula (36) for all fixed
€ > 0 the branch of eigenvalues is situated along the parabola

(ImA)2(R—1)? (e —¢%)?

ReX = - . 62
© (e-<2)2 4R-1)? (62
. 20\ . .
If we change the variable z = - b (58) then using formula (34) we obtain
it+e
zn:§+7m—§—i(s+2e)+o(e ), €—=0 (n=0,1,2,...). (63)

Let us define v, := 5 4+ 7n. So, we have asymptotic formula for the solutions of (58)

—1+¢e2+ 2 ,
)\n(E) — Tzn =
1
T [—vp + €2(1+ 50, 4+ v7) + 2i(e(vn + v7) +26%0,)] + (%), & 0. (64)

If £ = 0 then it is the branch of negative eigenvalues

772(% +n)2

An(0) = ——"

(65)

If € increases then all this values move asymptotically in upper complex half plane along
some parabolas, and its displacement as big as the number n. By formula (38) for all
fixed € > 0 the branch of eigenvalues is situated along the parabola

272 2 2
Re ) — (ImA)%* e —i—O(E)’
g2 + o(e?) 412

(66)

rotated through the angle arg(—1 + &2 + 2ie).
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6. CONCLUSION

In present work we consider some auxiliary spectral boundary value problems arising
in theory of metamaterials. We prove that general problem has discrete spectrum situated
in the sector argff < argA < arga. In the special one-dimensional case we find
characteristic equation for eigenvalues A, and establish its localization in the narrow
angles arga < arg A < arga+9d and arg 5 — 6 < arg A < arg (6 > 0) for n — oo. More
precise, we find exact solutions of limit characteristic equations corresponding to each
of these sectors and prove that asymptotic behavior of the eigenvalues coincides with
these solutions which are parabolas with polar axis of symmetries arg A = arga and
arg A\ = arg 3. For the interesting physical case a = 1, /8 = i + ¢ we find asymptotic
behavior of the eigenvalues A, for ¢ — 40 depending on the number n.

Authors thank to Kiselev A.V. and Kopachevsky N.D. for statement the problem and
useful advises.
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O cneKTpaJIbHBIX CBOMCTBaX HEKOTOPHIX BCIOMOTATEJIbHBIX KPAEBBIX 33424
TEeopuM MeTaMaTepuaJsioB
Paccmampusaemcs 106a4 cnexkmpasvnas Kpaesas 3a0a4a, B03HUKAIOUWGA 6
MEOPUU MEMAMAMEPUAN0E. B obwem cayvae doka3ano, 4mo ee cnexmp A6Ad-
emca JUCKPEemHvM U PACTLONOHCEH 6 HEKOOPOM cexmope. B wacmmom odno-
MEPHOM CAYHAE HATOEH AOKAAUSAUUA COOCTNBEHHLT 3HAYEHUL, CMPEMAULUTCA

K 6BC?COH6%HOCTTLU, a MawraHce HEKOMOPBLE ACUMNIMOTNUYECKUE diopmym)t.

Kirouesnie ciioBas: CHGKTpaJH)HaH KpaeBas 3a/1a4a, rZLI/ICK]I)GTHBIIL/'I CIIEKTD, JIOKaJIN3aIlA
CODOCTBEHHBIX SHHHGHI/H'?'I7 ACHUMIITOTHYIECKHE (i)OpMyJH)I

IIpo ciekTpasibHi BJacCTUBOCTI AeAKNX JOIOMIi>KHIUX KPANOBUX 33aAa4 TE€OPil
MeTaMaTepiaiB
Poszenadaemoves nosa cnexmpanvha kpatiiosa 3a0aua, wo 6UHUKGE 8 MeEOPLi me-
mamamepianie. Y 3azarvromy eunadky dosedeno, wio i cnexmp € Juckpemmnum
ma PO3MAUL0BAHUM Y JeAKOMY CeKmopi. Y 4acmuomy 0OHOMIPHOMY SUNGIKY
3natidena AOKAAIBAULA BAACHUT 3HAYEHD, WO 3052a10MbCA J0 HECKIHUEHOCTNI, G
mMaKxoxHc Jeari acCuMNMOMUYHI HOPMYAU.

Kurouessie cioBa: CriekTpasibHasi KpaeBast 3a/1a49a, JIMCKPETHBIN CIIEKTD, JIOKAJIU3AIINs
CODCTBEHHBIX 3HAYCHUI, ACUMITOTHICCKIE (DOPMYJIBI



