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ABOUT DEPOSIT DIVERSIFICATION PROBLEM

Possible ways to take into account risks, caused by uncertain factors, are
investigated using the problem of optimal deposit diversification as an applied
example. It is assumed that the investor (Decision Maker - DM) does not know
future exchange rates at the end of the deposit period, and focuses only on
some limits of their possible changes. Solution for this problem of decision-
making under uncertainty depends on DM’s attitude to the risk/income. Various
solutions: optimal with respect to guaranteed income, optimal with respect
to guaranteed risk (Savage minimax regret solution), as well as solution of
multiple-criteria problem with two criteria of equal importance, namely, risk
and income, are obtained.!
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INTRODUCTION

Conditionally economists divide Decision Makers (DMs) into three categories
according to their relation to risk and income (Cheremnykh 2008, Fisher, Dornbush
and Schmalensee 1988). "Riskphobes"eliminate any risk and prefer to maximize the
guaranteed income . "Riskphils"in their decisions take into account only the risks and
seek to minimize them. The concept of risk is ambiguous. We should note that in
this study the risk is understood as the risk by Savage - as a loss of income due to
ignorance values of uncertain factors. "Neutral"DMs try to consider both indicators: the
income and the risk. This leads to a problem of multiple-criteria decision making under
uncertainty (MCDM). There are different approaches to its solution.

'PaGora BoImosHena npu buHAHCOBON Homuepkke PODI (14-01-90408).
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1. PROBLEM OF FORMALIZATION

In the beginning of some time period (to be specific - year) DM distributes $1 to
m + 1 deposits in various currencies. Let K7i..., K, be courses of these currencies at the
beginning of the year against the U.S. dollar (obviously the dollar’s course Ky = 1),
and xg, x1, ..., Tm be sizes of deposits in dollar terms. Interest rates of all types of the
deposits dg = r,dy, . ..,dm are supposed known. However, exchange rates at the end of
the deposit period are unknown. This fact is reflected by uncertain parameters yi, ..., ym
(obviously, yo = 1). For these uncertain parameters only borders of their possible values
are known:

(S [alabl}a"'aym € [amabm]-

Financial result at the end of the year after conversion into dollars depends on both
a plan of diversification x = (xg,x1,...,2;) and the exchange rates at the end of the
period — uncertainties y1, ..., Ym:

F(ey) = (14 vy + LT 9Ty (L )Ty (1)
K K,

DM is interested in getting the greatest value of the final result f(z,y). However, he
should take into account the possibility of realizing any values of uncertain factors —
the exchange rates y; € [a1,b1], ..., Ym € [am, b

Thus, the mathematical model of the problem of $1 diversification is represented by
triple

['=<X.Y, f(z,y) >,

where X = {x S Rm“‘ Yolowi=1,2; >0, (i = 0,...,m)} is a set of all admissible
plans of diversification (a set of DM’s strategies), Y = [a1,b1] X -+ X [am, by is a set
of possible values of uncertain vector y = (y1,...,ym), and f(z,y) is an utility function
(1) of depositor (DM). The value of this function will be called outcome.

From the standpoint of operations research, I' is a single-criterion problem of decision
making under uncertainty. At a fixed uncertainty y we are facing a problem of maximizing
a linear function of = on a polyhedron X. The set X is a canonical simplex in R™*1.

Presence of uncertainty and desire to consider it leads to a concept of risk as a
possibility of deviation of some results from their desired or expected values. DM’s
attitude to risk, willingness or unwillingness to consider it determines the type of
decision-maker ( Riskphobes , Riskphils, Neutral).

Decision-making in the problem I' from the standpoint of all three grades constitutes
the content of this paper.



224 A. S. Gorbatov, V. |. Zhukovskiy

2. THE BEST GUARANTEED RESULT (CASE OF RISKPHOBES)

Here we discuss a guaranteed solution for the DM, who does not accept (ignores) the
risk, focuses only on outcomes and uses the principle of the best guaranteed result by
Wald (maximin principle) (Wald 1939).

Definition 1. A pair (29, f9) is referred as guaranteed on outcomes solution of the
problem I if

9 = min f(29,y) = maxmin f(z,y).
f yeyf( y) xeXyeyf( y)

Maximin strategy z9 is a guarantying one and f9 is a guaranteed income. Construction
of this solution consists of two stages:
Stage 1. Calculation of inner minimum (for every strategy = € X) yields a guarantee

flal = min f(z,y) = f(z,y(2)) < fzy) VyeY. (2)
Stage 2. Calculation of outer maximum yields
17 = fla?] = max fla] g

This stage yields the best (the biggest) guarantee because f[z9] > f[x] Vo € X. The
result of the stage 1 is

1+d 1+ dy)zmam
Fl) = F(,an, . am) = (1 ryag + LFIT0L ) (L ) omtn
e i

m a;
= Z(l +di)ri— + (14 7)w0.
i=1 Ki

It follows from linearity f(z,y) on variables vy, ...,y and special form of the set
of uncertainties Y. The worst case of uncertainty y(z) = a = (ay,...,an,) is the same
for every strategy x € X, and the guarantee function f[z] will be a linear function
of xg, 1, ...,y with coefficients kg = (1 + 1),k = %,...,km = %. These
coefficients define relative guaranteed effectiveness of various currencies deposits.

Hence the stage 2 is a special kind problem of Linear Programming (LP) with an

objective function

flz] = Z kix;
i=0

and with very special kind of linear constraints
m
=1, ;>0 (i=0,..,m).
=0

They define the set of all admissible strategies X as a polyhedron with m + 1 vertices
M = (1,0,0.....0), 2 = (0, 1,0, ...,0), ..., 2™ = (0, ...,0,1).

Remember one known in LP theory extreme property of a linear function on a
polyhedron: maximal value is reached on some vertex of this polyhedron and a set of all
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points of maximum coincides with the convex linear hull of all vertices with maximal
value of the function.

Theref 9 — 9] — — (0] = k..
erefore, f9 = fl29] = max flz] = max flz"V] = max ki
Let R = max k; and Ig is a set of numbers of "the best"currencies with k; = R.

0<i<m
Then a set of all points of maximum for flz] =Y " kjz; on X will be

m
X = {Z’ERerl‘Za}i—l, z; >0 (iEIR), z; =0 (Z@é[}ﬁ}
i=0

Proposition 1. The guaranteed on outcomes solution for the Problem I' has the
following form:

(29, f9) = (2, R = max k;),

0<i<m
where
l’lg: ,if ki< R
9>0, if k=R = k; m =1 (4)
x; >0, if k= = Jax Z,Z;fm— .
1=

On the other words, DM should calculate coefficients ko = (1 +7), k1 =
_ (1+d1)a1 k _ (1+dm)a7n
J7¢ sy hm — Em

— 1 g oo

coefficient k; = R. If there are two or more such maximal coefficients, total sum may be

, and deposit all $1 to the currency with maximal value of

distributed among the corresponding currencies in any arbitrary way.

3. RISK-ORIENTED APPROACH (SAVAGE MINIMAX REGRET SOLUTION)

This section relates to DM, who is oriented on minimization of guaranteed risk
level. We shall use a principle of minimax regret by Savage (Savage 1954). To simplify
calculations we consider later the problem with two currencies. Further notations are
associated with previous ones as follows:

ro=2z,2z€0,1], 2y =1-2, y1 =y, y € [a,b], a1 =a, by =b,dy =7, d =d, K1 = K.

Then the utility function has a form

Fla,y) = (1+1r)e + (Hd);{l —)y. (1)

Definition 2. A pair (z",®") is referred as a guaranteed on risk solution of the

problem I' if " = max ® (2", y) = min max ®(x, y), where Savage risk function is
yey zeX yeY

O(z,y) = max f(z,y) — f(z,y).

Risk by Savage may be interpreted as a loss of the utility due to lack of knowledge of
the uncertain parameters values at the moment of decision making.

Choosing the strategy z € X, DM tries to minimize the guaranteed risk by Savage.
Construction of this solution consists of three stages:
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Stage 1: construction of functions f[y] = max f(z,y) and ®(z,y) = fly] — f(x,y).
e
Stage 2: computation of inner maximum — for every x € X the guarantee on risk
max O(x,y) = lx] > &(x,y) Vy € Y is defined.
ye

Stage 3: computation of outer maximum — construction of ®" = min,cx ®[z] = ®[z"].
The second Stage for every strategy gives the guaranteed risk (®[z] > ®(x,y) Yy € V),
on the third one the strategy with the least guaranteed risk is founded:

Pz"] = ®" < D[z] Vo € X and [z"] > ®(a",y) Vy € Y.

Proposition 2. The guaranteed on risk solution of the problem I' has the form

1+7r
1,0), if K >b
(1,0), if K15 >,
1+
0,0), if K <a,
(mr’ (I)r) = ( ) / L+d
Kl o (b= KHE) (K —a) (1+4) PR
if a )
b—a K(b—a) ’ 1+d
(5)

Proof. Let us consider 3 cases: first, K%ig > b, second, K}ig < a and third
a< K %IZ < b. These cases overlay all possible variants of relative interposition of the
point K iig and the segment [a, b] on axis y.

Case 1. Let Kiig >b= (14+r)K > b(1+d). Then

1 1
fay) = e(+r)+(1-2)p0+dy<e(l+r)+(1-2)p01+db<
1
< z(l+r)+(1 —x)EK(l—H“) =1+7r Yz el0,1], Yy € [a,].
But f(1,y) = (1 +r) for all y € [a,b]. That is why with Kﬂg >b
Jnax fl@y)=f(Ly) =0 +r) = fly] Yy € [a,] (Stage 1).
In according with the Stages 2 and 3 ® = min max ®(z,y) = 1+ r —
z€[0,1] y€la,b]

— max min f(z,y).
z€[0,1] y€la,b] fe.y)
1+r

Due to the assumption K1+d > b > a and the Proposition 1 we obtain " = 1 and

min f(z",y) =1+ r. Hence, if K}J“:l > b, then
y€la,b] *

O(z",y)=P(L,y)=1+r—(1+7r)=0Vy € [a,b].

Therefore, ®" = max ®(z",y) = 0.
y€lab]
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Case 2. Let K%ig <a= (1+r)K < a(l+d). Just like the previous case for all

x €10,1], y € [a,b] we have a chain of inequalities

1 1+d 1+7r 14+d 1+d
=x(1 l—-2)—=1+dy < —— K- < .
o) =alt )+ (=) (L dy < e (110K —a) 4 1ty < Loty
On the other hand, with =0 £(0,y) = £%y. Then with K%iggawe have (Stage 1)
1+d
= —y = = b
xrg[gﬁ}f(m,y) 7 ¥ =Tl =10y) ¥y € lab],
therefore
1+d Yy 1+d [1+7r
o — L A+ -+ )L =% _
(@) =ty =) — (k) - 0) g = = e | 1R ]
Later, with Kﬂ'; < a we have
1+d |1+~
®" = min max { ——— K—y|bt=
zrél[éfluy@[a,}il{ K x{Hd y”
0, z=0
- m[ionl] sup min 1+d:r[1+rK } -
xe|0, - —
xe(ol,)l}ye[a:b} K 1+d
0, x=0
= min 1+d [1+~r 1+7 =0,
zel0,1] | — sup —— K—-b|=0, K <
Rl s x[1+d ] 11d=1
and 2" =0
Case 3: a < K%j:; < b. Let us calculate f[y] = m[%%]f(x,y) using inequalities
xe|0,

a(l+d) < (1+7r)K, b(1+d) > (1+r)K. As the function f(x,y) linearly depends on
x (with fixed y) its maximum is obtained in a boundary point of the segment [0, 1]:

1+4+d

flyl = Jnax, fla,y) = max{f(0,y), f(1,y)} = max{(l +7), ——y},

and ®(z,y) = fly] — f(z,y) = max(Py, P2), where

@a(a,) = (147) — (1) — (1 =)y = 22104 1)K — (14 dy,
B(e,y) = Ty~ (L) — (-2 =y = T[4 dy — (14 1)K,

In according with Stage 2 and using the linearity of the functions @4 (z,y), ®2(z,y) on
y, we obtain Vz € [0, 1] the guarantee on risk
®[x] = max ®(z,y) = max max{q)l(x,y),QQ(x,y)} =
y€Ela,b] y€la,b]

= max yrél[z;?l()] {®1(z,y), P2(z,y)} = max {®1(z,a), P2(x,b) } = max {®[z], Paz]}
(6)
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where ®4[z], ®2[x] are linear functions:
1—2 x

ifa] = —— 1+ 1)K = (1+d)al, Bafz] = 4

Hence, the function ®[z] = max {®1[z], 2[z]} is a piece-wise linear convex function

(1+d)b—-(1+r)K]. (7)

with one break point. This point of interception " can be find from the condition
<I>1[$”] = CI)Q[.CI}T]

1 1 1
" = bl [11; - a] (z" € (0,1) due to Case 3 condition a < Kl ig

As @4 [z]| decreases and ®9[x] increases, " will be unique point of minimum for strong

< b).

convex guaranteed risk function ®[z| on [0, 1]. Minimal guaranteed risk will be

. C o (e (K —a) )
P :xrerl[gll]@[m]:@[x]:@l[m]:@2[33]: KO —a) . (8)

Note that with Case 3 assumptions ®" > 0.

4. TWO-CRITERION APPROACH (RISKNEYTRAL CASE)

Suppose that DM takes into account both outcomes and risks, seeking to increase the
value of the outcome f(x,y) and reduce the value of the risk function ®(x,y). At the
same time DM should consider the possibility of any uncertainty y € Y. Therefore we
put into correspondence initial single-criterion problem I' two-criterion problem under
uncertainty:

L=< X,Y {f(z,y), —®(z,y)}) >, (9)
where XY, f(z,y) are the same as in the problem I', and ®(x,y) is the risk function.

In this problem DM, choosing his strategy x € X, seeks to increase both criteria f(x,y)
and —®(z,y) (which corresponds in particular to reduction of risk ®(x,y)). Recall that
the uncertainty y can take any value from the set Y = [a, b].

Multiple-criteria problems under uncertainty were first studied in detail by Zhukovskiy
and Molostvov in the paper (1980) and later in their monographs (1988, 1990).
Various aspects of multiple-criteria optimization under uncertainty were investigated
for both static and dynamic cases by Zhukovskiy and Salukvadze (1994), Salukvadze,
Topchishvili and Zhukovskiy (2002), Molostvov (1983, 2004). The further development
of the theory was carried out by Zhukovskiy and Kudryavtsev (2013). Following these
results, introduce the concept of solution for the problem T.

Definition 3. A triplet (2°, f*, ®%) € X x R? is referred as a strongly guaranteed on
outcomes and risks solution (SGOR) of the problem T, if:

a) there exists functions @ : [0,1] — [a,b] (i = 1,2) such that Yz € [0, 1]

fla] = min f(z,y) = f(z,yV(2)), /2] = max &(z,y) = (2,5 (2));  (10)
y€lab] y€lab]
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b) ma (9fa] — @9a]) = fo[a"] - ¥9[a"];

o) f* = f9la*], ®° = 9[a]. (11)

Remark 3. A game interpretation of the strongly guaranteed on outcomes and risks
solution x° € X is the following. Using the strategy x° € X, DM provides, with any
possible realization of the uncertainty y € Y, the guaranteed outcome f* < f(z*,y) with
the least possible risk ®* > ®(z°,y) .If with any another strategy x € X the outcome
will be better (f(z,y) > f*), then in any case the risk will be worse (®(z,y) > ®°).

Calculation of the strongly guaranteed on outcomes and risk solution consists of three
Stages.

Stage 1: construction of functions f9[x] = minb flz,y), ®Ix] = yrg[iu}z} O(x,y).

)

Stage 2: construction of Pareto-maximal strategy x® € X in two-criterion «problem
of guarantees» I'y =< X, f9[x], —®9[z] > through maximization of linear convolution of
two criteria with both coefficients equal 1.

Stage 3: construction with help of (11) guarantees on outcome f* and risk ®°.

Lemma.

£1a") - @ffa’] =

a,

2 (147 . bta 1+?”K_ +1—|—d
b—a |l1+d 2 14+d K
where 2" and ®;[z"] = ®" were defined earlier in (5) and (8).

Proposition 3. The strongly guaranteed on outcomes and risks solution (SGOR)
(2%, f*, ®*) for the Problem T has the following form:

1+r
1.1 0), i«f K >b
(7 + 7, ): if 11d="
1+d 1+7r a+b 1+7r
1,1 —— |b— K ] K <b
(2%, f*, &%) < K { L+d D’”c 2 “Pivad =
x pry
. (z", f",®") ifa<Kl+T<a+b
) b ) ]_—I—d_ 2 )
14+d 147
0,—a,0 i f K <
<7 K a7>71f 1+d—a7
where

1+7r
p— K _—
N b—a[ 1+d a}’

1+d 1+ 2 144
T ] K _
/=1 K(b—a)[ 1+d a’] K “
o (v- K1) (KE5—a) 1+ )

K(b—a)

147
14+d

Proof. Depending on relative interposition of the point K and the segment [a, b]

one should consider 4 cases.



230 A. S. Gorbatov, V. |. Zhukovskiy

Cases 1 and 4: Kiig >b>aor K%ig < a. Here in appliance with the Propositions
1 and 2 will be:

=0 = >b>a,
ma (£9[a] ~ 99[a]) = S
z€|0, s _ pla] — . <
£o = 4700 = e, if K <,
because ®° = ®I[1] = ®I[0] = 0.
So SGOR in Cases 1 and 4 has the form:
(1,1+r,0), Tza
(2%, f7, 27) = o Ltd,
9 K ) d —
Next two Cases are specified by the condition a < K }ig < b.
On the Stage 1 we will use the guarantee of the outcome
1+d[1+4+7r 1+d
9] — — _
SRS ET] (SN PEEE
and the guarantee of the risk
1—
Bifa] = ——[(1+ 1)K — (1 +d)a], for x € [0.27]
®I[z] = max P(x,y) = xK
velab] Oy[x] = ?[(1+d)b—(1+r)K], for z e [2"1].

On the second Stage, to calculate the difference f9[x] — ®9[x], formulas for f9[z] and
®9[x] from the Stage 1 are used. Namely, for z € [0, 2]

1+d[1+r 1+d
fIz] — ®i[z] = 22 [1+dK a]+2 a—1+r
1+d[1 1+d[1+7
=2 B K —2
K [1+d ] K [1+d “]’

and for z € [z", 1]

90T — PIT] — _
fIz] — ®5[z] = 2z e 1+dK 5 F7d

Then the problem I' (where X = [0, 1]) we associate a pair of two-criterion problems:
Iy =< [0,27], fIz], —®[z] >, T9=<[2",1], fI[z], —PI[z] >

In view of earlier obtained expressions for 2" and (8)

. 1 1—|—r
" = —a
b—a| 1+d ’

(v- K1+T)( Lir _ )1+d)
—a)

1+d[1+r a+b]+1+d

q)’l"
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Case 2: a < Kiig < «tb A "maximizator"z® for the difference f9[z] — ®{[z] for the

Problem I'; has the form:

14+d |1 14+d |1
T° = argmaze(o zr] {Qm;; [1 I;K - a} — % [ +7”K — 24 } =z,

and by Lemma

1+d
K—a}++a20.

f91a") — ¥{la") = N

2 |14r b+al||[l+r

b—a[1+d 2 }L+d

Analogously the "maximizator"z® for the difference f9[z] — ®J[z| for the Problem I'y
will be z* = z", and by Lemma

2 {I—H’K_ b—i—a} [l—i—r

b—a |1+d 2 1+d

So, with a < Kiig < GTH’ we have z® = 2" and

Fola'] - @] =

1+d 147 > 14d
9[rS] — £5 — _
Plarl=1 K(b—a)[ 1+d a] K @
b— K& ) (KT —a) (14 d)
g (1) (55 o) 140

K(b—a)

Finally, strongly guaranteed on outcomes and risks solution has the form:

1 1+7 1+4d 147 2 144
T rq)r: K _ K _ -
o= (g R ] g e ],

(b— Ki5) (K4 —a) 1+ )
K(b—a)

. atb 1+
Case 3: = <K1+d<b.

As ‘%rb > a, then for the Problem I'y we have

1
z® = arg max {Qx[ +TK—a]}:xr,

z€[0,z7] 1+d
and by Lemma we get the following equality:
1+d [1+7 2 14d[1+7
b—a)K [1—1—d “} T K [
Similarly for the Problem I's:

s IL+r a+b|l| _ a+b
x —argxg[lﬁ;’(u{Qx[l_FdK 5 }}—1 (as 5 < K)

fola"] = @f[a"] =2

and
fo] - @3[1] =2

1+d[14+7r _a+b _1+d
K |1+d 2 K &
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Since mas oy (f7[z] — B9[a]) = max(fofa"] — 4[a"), f[1] — B1]) =
1+d |14 1+ "
- 2 K—a| ——¢
max{ b—a)K [1+d } K { 1+d ]
1+d|1+7r a+b 1+
K —
K [1+d 2 ] }
the condition %52 < K434 < b implies the inequality fg[:n’”] — ®f[z"] < f9]1] — ®Y[1].
So in Case 3 (a+b < K%Ig < b) we have z°=1 and SGOP has the following form
1+d 1+r
e =1(1,1 — K
00— (1 er [ L)

The proof of Proposition 3 is finished.

5. CONCLUSIONS

We investigated the problem of optimal structure of multi-currency deposit under
uncertainty of future exchange rates. We had only the limits of possible changes for these
uncertain parameters, any statistical characteristics are unavailable. We considered three
possible approaches for accounting risk: complete elimination of any risk, minimization
of expected losses due to the uncertainty, and multi-criteria approach, which takes into
account both criteria - the outcome and the risk. These approaches correspond to the
type of a decision-maker, namely to his/her attitude to the risk: adversary of risk, lover
of risk or neutral DM. Propositions 1, 2 and 3 give an explicit form of the optimal
solutions for the problem of the guaranteeing deposit diversification depending on values
of the meaningful economic parameters r,d, K,a,b and on DM’s attitude to the risk.

After defining his/her type, the value K %I:l and the limits a¢ and b of the uncertain
parameter y, DM obtains, by applying the corresponding formula, a numerical value for
his/her guaranteeing deposit strategy. By the way, Proposition 3 shows that use of a
"risk"strategy (from Proposition 2) reduces both the guaranteed risk and at the same
time increases the guaranteed outcome, thus "killing two birds with one stone."Two
last cases have been restricted by two-dimensional considerations. General approaches,
solution concepts are the same for the problem with n currencies, but explicit farm
of the solution will be replaced by some algorithm associated with piece-wise linear
programming technique. Other possible direction for further investigations concerns
on a "mixed variant"of incompleteness of the information, when we know stochastic
distributions of some nondetermined factors, but only to within uncertain parameters.

Such problems can be considered by combining stochastic and maximin approaches.
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O zamaue muBepcudUKaIMI BKJIAIA
Ha npumepe 3adavu dusepcudurayuu 654000 UCCAEIYOMCA BOZMOHCHBILE NYMU
YUUMDBLEAMb PUCKU, BVI36AHHIE HeonpedeserHbmMU darxmopamu. IIpednonaea-
emcs, wmo unsecmop (Auyo, npunumarowee pewenue — JIIP) ne snaem 06-
MEHHBIT KYPC HA KOHEY, CPOKA 8KAAOG U OPUEHIMUPYEMCA MOABKO HA HEKOMOPLLE
2PAHULDL, BHYMPU KOMOPLIT OH MOHCEM USMEHAMBCA. Pewenue smotl sadavwu
saeucum om moeo, kax JIIIP omnocumca % pucky u npubdviau. Bosmooichoie
PEWEHUSA: ONMUMANBHOE 6 CMBICAE 2aPAHMUPOSAHHOT NPUOBLAU, ONMUMAALHOE
8 CMBICAE 20PAHMUPOBANHO20 PUCKA (Munumakchoe coocanrenue Casuddica), a
makoice petenue MHO20KPUMEPUaAbHotl 3a0a4t ¢ 08YMSA PAGHOZHAYHLLMU KPU-

MEPUAMU, ¢ UMEHHO BEAUNUHOT PUCKE U NPUODLAL.

Kirouesrnie ciosa: IPUHIAII MUHUMAKCHOI'O CO2KaJICHUA, HEOIIPEAEJICHHOCThb, MaKCH-

MMUH, PUCK, BEKTOpHad OIITUMHUI3AIIUA.



