Scientific Notes of Taurida National V. I. Vernadsky University
Series: Physics and Mathematics Sciences. Volume 26 (65). 2013. No. 2. P. 95-108
UDK 530.12
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This work is the natural synthesis of two modern cosmological theories: five-dimensional cosmological
theories that arise as the development of a unified field theory proposed T. Kaluza, and the theory of eternal
inflation Guth-Linde-Vilenkin. The theory of eternal inflation does not give an answer to the question of why
the "inflaton" has given, and not some other form of its potential energy. Our approach is based on the variety
of geometry as a dynamic system, and the role played by the time the 5th coordinate. The dynamics of such a
system is described by equation of E. Cartan, the solution of which defines the geometry in our 5-dimensional
manifold. This equation is first stochastically quantized at G. Haken and then turns into a nonlinear using the
ideas of Yu. Klimontovich. The resulting nonlinear generalization of the Fokker-Planck equation describes the
self-organization of fluctuations in the Minkowski space. Moreover, the fluctuations at different values of the
S5th coordinates can self-organize in the geometry generated by different energy-momentum tensor of
"inflaton" with a different structure of the potential energy.
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INTRODUCTION

Modern cosmology regards our universe as one of the innumerable universes which
form the multiverse.

One of the most well-known mathematical models of the multiverse theory of eternal
inflation is a Guth-Vilenkin-Linde. According to this theory, our multiverse occurs as a
quantum fluctuation creating from "nothing" 3-dimensional pseudosphere a certain (small)
radius. Originating it begins to expand under the influence of "dark energy"-inflaton-
scalar field, the value of which corresponds to the maximum of its potential energy (the
false vacuum state). When in different areas of the multiverse inflaton rolls down from a
peak to a minimum of its potential energy (the true vacuum state), the difference in
potential energy of inflaton transform into the energy of the nascent high-temperature
cluster of elementary particles. Each such "big bang" leads to "island universe" — our own
and other similar (A. Guth, A.Linde, A. Vilenkin) [1-3]. The disadvantage of this
approach is that it is not clear why the geometry of space-time must satisfy the Einstein
equation with inflaton which having this structure. Who chose this structure ?

In this paper we attempt to solve the problem of inflaton origin on the basis of the 5-
dimensional cosmology. This kind of cosmology emerged as the development of
T. Kalutza, which introduced a pseudo-Riemannian geometry around the five-dimensional
space. Einstein proposed to move from metric geometry to the geometry of spaces of

95


mailto:yumitcay@yandex.ru

MAYOROVA A.N., MENDYGULOYV YU. D, MITSAY YU. N.

affine connection, which would include both electromagnetic and gravitational fields. A
unified field theory was constructed in the article of Yu. Mendygulov and I. Selezov [4],
where a 5-dimensional space was introduced electro-gravitational connectivity. However,
the geometry of all these studies was cylindrical in 5th coordinate.

In the late 20th century and early 21th century there was a lot of work on the 5-
dimensional cosmology, which uses no cylindrical solutions of 5-dimensional Hilbert-
Einstein equations [5].

We offer a totally new approach to the 5-dimensional cosmology, based on a
generalization of the Hilbert-Einstein equations that describes the self-organization of the
fluctuations of the Minkowski geometry in the geometry of curved four-dimensional
space-time, taking place on the 5th coordinate x*. Arising in this way 4-geometry of the 4-
dimensional sections 5-dimensional space described by the standard Hilbert-Einstein
equations, energy-momentum tensor of which is the energy-momentum tensor of the
scalar field (inflaton) with a definite form of potential energy. Thus, a 5-dimensional
space there is a set of 4-dimensional cross-sections (space-times), each of which is a
multiverse of Guth-Vilenkin-Linde, the geometry of which is the result of Darwinian
selection of modes of stochastic fluctuations of 4-dimensional geometries in the transition
from one 4 -dimensional cross-section to another.

1. BASIC EQUATIONS

The construction of the desired generalization of Einstein's equation we begin with a
description of stochastic fluctuations in the geometry of Minkowski space, presenting
curvature of the Riemannian connection R,, as a dynamic system of mechanics Cartan [6].
To do this, first we assume that the Hilbert-Einstein equations of Minkowski space

Rw=0, where n,v=0,1, 2, 3, (D)
is an equation that describes the steady-state solution of the equation:
4 _ —
dR#V/dx =-R,, ,1v=0,1,2,3. 2)

In the 5-dimensional differentiable manifold with a system of local coordinates (x
x*), 4-dimensional sections that x* = const describe the space-times of the various
multiverse.

In mechanics, the equations of the type (2) may take the form of Cartan equations:

&30 =0, (3)
&R,
where € is the symplectic metric
Q, = [J=gd'A..Adv* R, AdR" + R*"ax* ] @)
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here 1, v =a3 g= det”gaﬂu. We see that in our approach to the Hilbert-Einstein 5-
7

manifold plays the role of the extended phase space of equation (2).
Now, to describe the fluctuations of the Minkowski geometry, we introduce the

auxiliary variables ® ,, and © , . as well as random forces dWW*" and pass from the

symplectic metric (4) to the symplectic metric:
Q = j J- gdx" A Ady’? {dﬁw(x)A(dR”V(x)+ R* (x)dx* —aw*(x))+ (dw(x))Ad®,,, (x) +

+ [V gdy Ay [ (@ (1) - 5(x - y)g"(¥)g (v)0dx* A, x. )]
&)
Averaging is understood in the sense(...) = IDd W (x)p[dW(x)].., here Q is the
square of the amplitude of fluctuations of the random component of force dW * |

This symplectic metric also describes the world of Minkowski, but with fluctuating
geometry. Indeed, the equations of Cartan [6]

&21 — &21 — ml
&ZR/JV(X) é‘d@)yv(‘x") &l®yvaﬂ(x’ y)

=0, (6)

give:

dR*"(x)+ R*"(x)dx* —dW*"(x)= <dW’“’(x)> =

= (dm " (x)dw *(y)) = 5(x — y)g"“(x)g" (v )Qdx* = 0.

The system of equations (7) — is a system of Ito stochastic equations and describes

the statistical properties of the random force (G. Haken) [7] and as time stands 5-th

coordinate. Thus, we see that the mechanics of the Cartan can describe not only the

conventional continual dynamic system, but also stochastic. The consequence of (7) is the
equation:

(7)

a’<R‘”>
_ _[puv

= (R*). )
It is analogous to equation (2), but describes the mean curvature at this point a 5-

dimensional space. If the curvature is not dependent on the 4-dimensional cross section,
the result of equation (8) is a condition

<R‘”> =0, 9)

which must be satisfied in this case, the Minkowski space with a fluctuating metric.
Especially strongly fluctuating geometry at the Planck scale, where it is a quantum foam
(Misner, Thorne, Wheeler) [8]. Ito equation (7) is equivalent to the Fokker-Planck
equation

GIR” X)) [];::(X)LIﬁdx"/\."z\df{LR””(x%g z (x)}f [Rw(x)]

SR*(x) 2 SR“(x)oR,,

(10)
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For the proof we consider following H. Haken [7], the derivative of the x* coordinate
4-dimensional space-time sections of our 5-dimensional manifold mean any functional

O[R""]:
dd (@[r*]) = [ DR f[R:V LE <‘@M> < {[FdeA Adx*dR*"(x)

x dx dx?

SR ()

2
—%j gde' A Ady —2 P R ()R () + }> < {[,/ gdx’A..Adx* (- R* dx" +

SR*(x)oR“*(y)
5D 1 5D
dw*” — = [ gdx"A . Ady* (= R*Vdx* + dWw ") R%dx* +dw ) —° L) =
+ )5Rﬂ\/(x) 2Jg * y ( i X o 5R""(x)(57?“ﬂ(y)}>

uv 0 3puv oD 1 0 S dW Y (x)dw “F
= [ Drr[R KjrdxA Adx’R ()5R~v() Ejgdx A...Ady< (XLX4 b) >><

XWJ jDR(D([Fdon A fv( )Rw(x)f[Rw(x)]Jr;j(_g)don___AdygX

A @) s glre ()
dx* SR (x)oR“ (y

S5’ v
2 QéR’”(b'R(x)Jf[R (x)],

1A%

j [ DRO[R ][ = gdx"A...Adx (&jv(x)iw(x)Jr

(11)

in this conclusion averaging is understood in the sense of:
= [ DRD(@w )f[R]plam]..

In view of the arbitrariness of the functional @, (11) should be functional Fokker-
Planck equation (10). "Stationary" solution of (10), which is independent of the choice of
a 4-dimensional space-time cross-section in a 5-dimensional extended phase space of the
universe, we have found from the condition:

T

fi = Cexp {— é [ de%...Ade”V(x)RW(x)}. (12)

It describes the geometry of Minkowski space, distorted "ripples" random
fluctuations in the amplitude of the order Q. Fluctuations of this type may be related to
fluctuations in the number of gravitons per unit 4-dimensional volume. It was in such a
state of initial geometry of space-time according to the cosmological ideas P. Fomin, and
E. Trayon [9].

which gives:
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Density functional probability distribution for the curvature of the universe
0

v o . X
f [R” (xa )] allows us to calculate the probability W that at the time # = — the geometry
c

0
. . . . . Xo .
of the universe (her rolled curvature) will look like R V(xk, xo), if at the time ¢, = =it
c
was the curvature of the form R* ”'(xk ,Xq ):

R”V(xk,xo) 1
puv(.,a 0 3puv(.alp a
ve jor (v )exp{_é [ g A Ad R (R, (o )}, 13
R*Y xk,xg
herek =1, 2, 3.

Such an approach to stochastic cosmological differs from conventional approaches
used in quantum cosmological [10-14] in which the integrals like (13), considered as
axioms as the probability amplitude, the wave function of the universe.

However, such approaches do not have explicit physical sense, given that R is not
dynamic in the sense of a variable quantum mechanics as immeasurable. In the formula

(13) R” V(xa) is regarded as a certain elementary random event that occurs with
1 -
probabilityexp{—EI,/—gdeA...AdXBR”VRW}, and the expression (13) as the

probability of a complex random event, consisting of a set of elementary events. In the
same approaches Vilenkin and Hartlle [10, 11, 14] a formula similar to (13) with Q =h or
1 only seen as an expression for the probability amplitude, which is not quite clear
physical meaning.

2. SELF-ORGANISATION OF FLUCTUATIONS

We now show that, under certain conditions, fluctuations of the geometry of
Minkowski space-time can self-organize in a 4-dimensional multiverse Guth-Linde-
Vilenkin by Darwinian selection modes [7] To do this, we transform (10) in the non-linear
equation, using Klimontovich ideas about the correlation of fluctuations of the
Hamiltonian dynamical system with the fluctuations of the probability density function
[15]. The role of the Hamiltonian in equation (10) executes the statement:

J‘EdXOA...Adx3{LR”V(x)+ 0 & } =H,

SR*"(x) 2 5R"V(x)5Rﬂv(x)

sl o) vl (o)

Therefore the use of this idea Klimontovich [17] reduces (10) to the form:

)+ a)= a4 ) (14
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Averaging this equation, we obtain the Fokker-Planck equation with the collision
integral in the general form proposed by Klimontovich [17]:

YLy (omr) =l ) 09

Here we assume that <6H of > the functionality of the < f >

We now show that, under certain conditions, fluctuations of the geometry of
Minkowski space-time (in a sense of x*) can self-organize in a 4-dimensional multiverse
Guth-Vilenkin-Linde [1-3] along the coordinates by Darwinian selection modes
(H. Haken) [7].

Let (12) is a stationary solution of equation (15), whereas others find the stationary

solutions can be following the ideas of Haken [7] . To do this, we expand the < f > solution

of (15) with respect to the eigenvectors of the operatorq)'[fo], which will assume a self-
adjoint, in the neighborhood of the vector f;:

()= 1o+ 2, [R,, ] and (16)
o'(£,)6[R,. )=, [R,.]

We substitute (16) into the linearized in the neighborhood of equation (15), we

obtain:
I TR XTH) YA T YRS

Using the orthogonality and normalization of the eigenvectors of a self-adjoint operator

[ore R, R, =0, . a7
we obtain an equation for the expansion coefficients (16)
dC
z=a,C,. 18
dx4 oo ( )

The decision of whichC_ = CY exp [agx4] shows that, if anything ¢z, (0, and then

lim C_ =0 in this part of the 5-dimensional manifold defined by the condition x*)0,

x4~>+oo

the expansion (16) leads to the expression lim < f > = f,, and this part will mainly be a
x" >+

space-time whose metric fluctuates around the Minkowski metric. If <6Héf > ,however,

such that there &, exists at least of one of which 0@,)0, in this case the state of the

curvature described by the probability density f, becomes unstable x* and it is necessary

to solve non-linear equation (15). For this, following (H. Haken) [7], consider the
decomposition (16) as follows:

()=t +C " K [R,, ] (19)

and substitute it into equation (15):
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4 e, (), =o(f,+c,(x),)

it

or after multiplying by & ,, and integration:

)= ore [, Pl R, ], (s R, D=l ) o)
This equation can be easily integrated in quadratures:
C,
{ % = x* @1)

Its steady-state solution C . satisfies the equation‘P(& ﬂ)=0 and describes the

probability density function for R#V fixed values of the form, which describes the

geometry of space-time (multiverse) located on the "distance" from the fluctuating
Minkowski space-time, where:

c

( dy ~4

A 22)
I50)

At a certain form of the operatorCD'( fo), this geometry is described by the
probability density function < f >1 :

(), = fu +C & [R, ]=Cexp {— é [V=gds'A..Ad’ Ra/’(x)Raﬁ(x)} +C& (R, 1=

=C, exp {—éf J-gdx A Adx® {R“’} (x)- I(Tl“ﬂ - %g“" T, H{Raﬂ (¥)- z(Tlaﬂ Lo, ﬂ}

2
(23)
Then for the area of 5D supermultivers the most probable distribution of the
5 i o 02 S
geometry R ; is given by the equation: 0 = .
éRaﬂ(x)

~ 1
From which it follows that Raﬁ(x) = ;((Tl Ty g, ﬂle, which shows that in this

area a 5-dimensional geometry supermultiverse organized in a 4-dimensional multiverse,
whose geometry is described by the Einstein-Hilbert equation with a certain energy-

momentum tensor T |
We assume that in addition to, £, and< f]> there are other stationary solutions (15)
and the operatord)'(< f >) has one eigenvalue 3,)0, then the following (H. Haken), we

can find another stationary solution (15) of the form:
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(1), =fu+CE IR, ]+ Cn[R, =

1 1 1
=G, eXp{— é,[ V- gdx"A..Adx’ {Raﬁ(x) 4 (Tzaﬁ - Egaﬂ T, ):”:Raﬁ(x) 4 (TZaﬂ - EgaﬂTz ):|}
24)
Here7, is the eigenvectorCD’(< f >1) with eigenvalue 3, .

Similarly, we can break all the 5-dimensional space on a 4-dimensional layers — the
space-times, the curvature of which will have a probability density function of the form:

(), =C*
exp {_é [V gdx"A..Adx’ [R“ﬂ (x)- 7., (T,-"'” —%g“ﬁ T, H[Ra/f (x)= 7. (T,-aﬁ LT, ﬂ}

2
and its most likely form will satisfy the equation
o(f). 1
Vi o= peo (x)- z,-l(T,-“ﬂ --g“T, } (25)
OR,, 2

A place where there is a layer of space with new geometry and its width (to x*)
related to Darwinian selection modes (H. Haken) [7]. For example, when the expansion of

the fluctuations fj to the eigenvectors of the operatorq)'( 0 ) (Eq. (16)) there is a vector & u

with lﬂ > (0, the stationary solution f, becomes unstable and the system (15) is

transformed into another stationary point f, +C ﬂﬁ ,as soon as the fluctuations in the
expansion of the stationary point appears vector 77, system becomes unstable and goes

into following stationary point f,, + C WSt a,nv etc. Therefore, the place and the width
of the layers are random. Each 4-dimensional cross-section of 5-dimensional space
perpendicular to the e, axis directed along this multiverse Guth-Vilenkin-Linde.

Generally speaking, the energy-momentum tensor Tiaﬂ (x) of the multiverse can have
whatever kind. However, for us, the most interesting are those multiverse, in which
energy-momentum tensor T[aﬂ (x) has the form similar to the energy-momentum tensor of
our universe. The equation for the curvature of the space-time is given by the Hilbert-
Einstein equations:

2

Here y — the gravitational constant, 7" — the energy-momentum tensor of the scalar

1
RA = Z(Tﬂ’” - —g‘“’Tﬁ] (26)

field defined for each local universe. This scalar field is a mathematical model of dark
energy, therefore, (26) is a good mathematical model of the geometry of our universe, as it
other than dark energy (74%), there is dark matter (23%), the nature of which is unknown,
and very few ordinary matter ( only 4-5%). Relying on the principle of mediocrity
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(A. Vilenkin 1995), can be considered the equation (26) as a good mathematical model for
the majority of other interesting for us local universes.

3. A SIMPLE EXAMPLE

Choose a metric for the local universe in the form of:
g=dt®dt—a’{dy ®dy +sin® y(d0®do+sin® Glp®dp)), 27)
We assume local universes 3-dimensional hyperspheres variable radius, depending on
the "cosmological" time t. Substituting the metric (27) in equation (26), to obtain the
tensor components R, :

da 1
R00:_3_:Z(T0€__gooTﬂ} (28)
a 2
Equation (26) also gives an equation for the scalar field g:
8“8ag+1"5‘,6"g+U'ﬂ(g) =0 (29)

where I'Y, is collapsed Christoffel symbol, and U,4(g) is the potential energy of the

cosmological constant ("dark energy") g in the B local universe.
In the model, of local universe Linde [16] is expected the field dependence g only on
the time t, that for the equations (28) and (29) gives:

S=-Zig U9

P (30)
§+3%4+U)(g)=0
It is easy to find a particular solution of equation (30):
g=g,=const Uy(g,)=0, (31)
i = %Uﬂ(gﬂ)a .
Ifin 31)U (g, KOthen
i==2Us(g)a (2)

and the solution is:

a=a, sin(‘/%‘Uﬁ(go)‘t+aJ (33)

a, = a, sin @ — the initial radius of the universe, a, — maximum radius of the universe,
T — the start time of compression of the universe:
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it is equal to:

7
——a

T=—-2

Joste)

For this type of universe obeys the law of conservation of energy (the first integral
equation (32)) has the form:

.. dfa’ ¥ d(a’
=212 =4y B
“ dt(2j 3| ﬁ(g(’)'dt(2J

or
d(a* gy a’
a5 e )0
ﬁ_,_l‘y (g )‘ﬁzﬂ+£‘U (g Xa—lzzconst
P R T T R ) ’

herea, a, are the radius and the rate of expansion of the universe after the beginning of

inflation. If in (31)U 4 (g, )0, then

i= %‘Uﬂ (g0)a . (34)

and the solution is:

a=a, exp{ %‘Uﬂ (go )‘t} (35)

In the case of such a universe law of conservation of energy (the first integral (34)) is:

L. d(a*) _d(x a’
aa_E(TJ_dt(3 Usleo) 2)

.2 2 -2 2
or %—%‘Uﬂ(goj% :%—%‘Uﬁ(goj%) = const,

where a, a, are the radius and the rate of the universe expansion after the inflation start.

When the universe has a 0-th energy [16], we get

“=H=2U,(z]) . (36)

here H is the "constant" of Hubble.
For more details of the cosmological model, we need to know the valuesa, anda, .

To calculate them look at a specific model of inflation at the beginning.
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Let the potential energy of the field g is given by Figure 1, then as long as the field
oscillates around the value g=0, thenU ﬂ(g)<0 and the equation (32) — this is the

-2
equation of the pendulum. The Lagrangian of this field is equal L = % —%‘U 5 (OXaz.

d 0 . O y4 Z
Indeed Ea L=a :£L=—§‘Uﬁ(01a=§Uﬁ(0)a

Fig. 1. The potential energy of the field.

It corresponds to the Hamiltonian H:

H=pd—L :%+%\Uﬂ(oja2 :%2+%\Uﬂ(o)|a2 37)

We assume that in t=0 and g =0 the universe was in the ground state of a quantum
oscillator with the Hamiltonian (37). Then, the wave function of the universe (at g = 0) was:

1 U,0)%
wo(a){%\Uﬂ(O)Og Lo —ﬂaz . (38)

What gives to ay from the formula (35) next value:

a, = ( Ida|y/0(a)|2a2J . (39)

When the fluctuations will lead the field g at the top of the hill of potential energy U,
the neighborhood values gy U P (g,) will be > 0, which would lead to "measure" the
radius of the universe and the average value of this measure will be a,. If the total energy
of the emerging universe of dark matter and ordinary matter will exceed the energy

inflaton, then the universe will shrink back to the point. If the volume of the universe has
arisen is like our universe, to include the energy of the inflaton, that is a field that exceeds
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the sum of the energies of dark and ordinary matter, the radius of the universe is
expanding at an exponential equation (35), where a, the initial radius of the universe.

To construct a more accurate cosmological models we must solve the system (30),
which is planned in subsequent papers.

CONCLUSION

In this paper, we show that multiverse of Gut-Vilenkin-Linde, may just be the
4-dimensional section, among many other multiverse, 5D supermultiverse. It is shown that
the fluctuations of the geometry that arise during the 5th Dimension, “along” which are
4-dimensional sections, “multiverse” of supermultiverse, can self-organize to create a
variety of 4-dimensional geometry of the cross-sections.This result was obtained by
generalizing the Hilbert-Einstein equations to account for the first stochastic fluctuations
of the metric by the stochastic quantization method Haken [7], and then the possibility of
self-organizing geometry (on the 5th coordinate). To do this first in a generalized Hilbert-
Einstein equations was by Klimontovich [17] a generalized collision integral, which
makes non-linear equation, then the equation obtained was analyzed by Haken [7].
Analysis showed that the stationary (in terms of the 5th dimension) correspond to
solutions of 4-dimensional geometries multiverse generated inflaton with different
structure of the potential energy that corresponds multiverse various laws of nature. The
dynamics of the inflationary expansion of various multiverse is also different — it can both
fit the model proposed by Guth, Vilenkin and Linde.

Thus, this work provides a new approach to the theory of eternal inflation, showing
the mechanisms which can lead to this kind of multiverse.
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Maiiopoa A. M. II'saTu-mipHa reomeTpissi cynmepMmy.JbTiBepca sIK pe3yabTaT CHHEPreTUYHOI
caMmooprasizanii croxactuyHux (uaykryaniii reomerpii MinkoBcbkoro / A. M. Maiioposa,
10. 1. Menauryaos, FO. M. Munaii // Bueni 3amucku TaBpiiicbKOTO HAIliOHAIFHOTO YHIBEPCHUTETY iMEHi
B. U. Bepraacekoro. Cepis : isuko-matematiyHi Hayku. — 2013, — T. 26 (65), Ne 2. — C. 95-108.

CnopaBxHi poOoTa € MPUPOIHUM CHHTE30M [BOX CYYaCHHX KOCMOJIOTIYHHMX TEOpiH: W'ATH MIipHUX
KOCMOJIOTIYHHX TEOpiii, sKi BUHUKIHN Y PO3BUTOK €IMHOI Teopii mois 3anpononosanoi T. Kayso, i Teopiero
BiuHo1 iH(usuii ['yra-Jlinae-Binenkina. Teopis BiuHOl iHGIALIT HE Ia€ BiANOBIAI HA MHUTAHHSA PO TE, YOMY
«iH(naTOH» Mae TaKy, a He sKych iHIIy QopMy Horo moreHuiitHoi eneprii. Ham miaxin 3acHoBaHuWil Ha
PO3MIIAAL TeoMeTpii K TUHAMIYHOI CHCTEMH, a TaKOK BUKOPHCTaHHI ISTHMEPHOTO IPOCTOPY B SIKOMY POJIb
«gacy» rpae m'sara koopainara. Jlinamika Takoi cucteMu onmcyetscs piBHAHHAM E. Kaprana, pimenHs skoro
BH3HAYA€ TEOMETPIIO B HAIIIOMY 5-BUMIPHOMY Pi3HOMaHITTI. Lle piBHAHHS CIIOYaTKy CTOXaCTHYHO KBAHTY€ETCS
1o XakeHy a IOTiM MEPETBOPIOETHCS B HENliHIHE BUKOpHUCTOBYrouH inei KilimonToBiwa. OTprMaHe HelniHiiHe
y3araiabpHeHHs piBHIHHS Pokkepa-Ilnanka onncye camooprasizamito Giykryamniii y mpoctopi MiHKOBCBKOTO.
Knitouogi cnosa: indnatoH, BcecBiT, KOJIMBAHHS, CaMOOpTraHizalis, piBHAHHA [ itb0epTa-ElfHIITeiHA, €HEpTris-
iMITyJIBC.

Maiiopoa A. H. IlsTu-MepHasi reoMeTpusi cynepMyJbTHBEpPca KaK pe3yJbTAT CHHepreTH4ecKoil
CaMOOPraHU3alMu CTOXacTHYeCKuX ¢uykryauuii reomerpuu Munkosckoro /A. H. Maiioposa,
10. 1. Menasiryaos, F0. H. Munaii / Yuensle 3ammcku TaBpHUecKOro HaIMOHAJIBHOTO YHUBEPCUTETA
nmenu B. U. Bepranckoro. Cepust : dusnko-marematnaeckue Hayku. — 2013. — T. 26 (65), Ne 2. — C. 95-108.
Hacrosimast pabora sIBISieTCS €CTECTBEHHBIM CHHTE30M JBYX COBPEMEHHBIX KOCMOJIOTMYECKHX TEOpPHH:
MATUMEPHBIX KOCMOJIOTHUYECKUX TEOPUI, KOTOPbIE BO3HUKIIM B Pa3BUTHE €AUHON TEOPHHU IO MPeAI0KEHHON
T. Kany3o, u teopueii Beunoit mndusiunu ['yra-Jlunne-Bunenkuna. Teopusi BeuHOH MHQISIMN HE IaeT
OTBETa HA BOIPOC O TOM, IMOYEMy «HH(DIATOH» HMEET TaKylo, a He KaKylo-TO JApyryioo ¢opmy ero
NOTEHIUAIBLHOI 3Hepruy. Hai noaxox oCHOBaH Ha pacCMOTPEHMU F€OMETPHUU KaK IUHAMUYECKOW CUCTEMBIL,
a TaK)Ke UCIOJIb30BAHUY IITUMEPHOIO IPOCTPAHCTBA, B KOTOPOM POJIb «BPEMEHI» UIPAET MATas KOOPAHHATA.
JluHaMuKa Takod CHCTeMBI ONHCHIBaeTcs ypaBHeHHMeM O. KapTaHa, pemieHue KOTOPOTO OIpenelser
TEOMETPHIO B HAIIeM 5-MEpPHOM MHOrooOpasuu. JTO ypaBHEHHE CHadajla CTOXACTHYECKH KBAHTYETCS IO
XaxkeHy a 3aTeM npeoOpasyercst B HeNMHEHHoe ucnonb3ys unen Kinmonrosnya. [lomyueHHOoe HenmHeitHOE
oboOmenne ypaBHeHus QPokkepa-IlnaHka oOmHCHIBaeT caMOOpraHU3alyio (IyKTyamuid B IPOCTPaHCTBE
MMHKOBCKOTO.

Knrouesvie cnosa: nudnaton, BceneHHas, konebaHus1, caMOOpraHu3anusi, ypaBHeHus [ uibpoepra-DiHuITeiiHa,
SHEPTUU-UMITYJIbCA.
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