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In this paper, a mathematical model of reduction of the wave function is proposed. The model is based on
ideas developed by Klimontovich and apply the method of stochastic quantization in the formulation of
Haken. The equation takes into account the stochastic nature of the interaction of a quantum system and the
measuring device during the measurement. From this equation, an equation of the Fokker-Planck was
received. The solution of which show a reduction of wave function.
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INTRODUCTION

In connection with the development of quantum information [1-7], the problem of the
quantum theory of measurement, set as one of the three great problems of theoretical
physics of the 21st century still Ginzburg, became relevant again. In the field of applied
research — quantum information technology, working principles underlying the theory of
quantum measurements. Applied nature of quantum information and the promising
prospects of building devices based on it have led to the fact that in recent times the
quantum theory of measurement and interpretation of quantum mechanics again actively
developing.

Since the days of the famous paper by Einstein, Podolsky, and Rosen is becoming
increasingly clear that to give an interpretation of quantum mechanics — the means to
explain how to understand the reality of quantum mechanics. Explain quantum reality in
some way means using a particular interpretation. This can be done in different ways.
Simple ways (which include the Copenhagen interpretation) is pretty easy to understand
and convenient for practical use, but they do not accurately convey the meaning of
quantum reality. More sophisticated techniques (including Everett [8]) pass this sense
precisely, are difficult to understand, but in practical work (for common quantum-
mechanical problems) hinder rather than help. This explains why Everett’s interpretation
has not been used. In recent decades, it has become popular, particularly with the advent
of quantum computing.

One of the first to criticize the Copenhagen interpretation of quantum mechanics
based on the analysis of the process of quantum measurement, made H. Everett [8]. He
noted that the time variation of the state of a quantum system, consisting of a system of
elementary particles and the measuring device, is described by the Schrédinger equation.
Since the system consists only of a large number of elementary particles. The solution of
this equation is a single-valued function of time and, therefore, the measurement must also
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be unique. This is contrary to the Copenhagen interpretation of quantum mechanics [9].
According to which the wave function reduction in the measurement process is random.
Over time were developed, the extended Everett concept [10].

Experimental data support the stochastic nature of reduction of quantum state in the
measurement process. In this connection there is the problem of constructing a
mathematical model of quantum measurement in which this contradiction would be
eliminated. Everett proposed a mathematical model based on the search for such
averaging algorithm solutions of the Schrodinger equation, which would lead to a
reduction of the state vector. He acted in the same way as did the Poincare, trying average
trajectory of classical dynamical systems in order to obtain an increase in entropy. Since
the process of increasing entropy is an objective reality, it can not depend on the measure
in the phase space of a dynamical system with the help of which is the average.

Therefore, attempts to enter into the mechanics of the Poincare entropy failed. There
is much more successful approach, based on the stochastic quantization of dynamical
systems, proposed by Langevin, Einstein, Planck and Fokker [11, 12]. Note also the
approach developed by Prigozhin and Klimontovich [13, 14].

1. BASIC EQUATIONS

During the measurement between the measuring device and quantum system an
interaction is exist. Which in our model is reduced to correlation between fluctuations of
ket vector quantum state o | t, a> and dH (a). Here dH(a) describes influence of the random
force from measuring device on the quantum system in the measurement process. As a
result of this interaction, the Schrodinger equation

Ld|t>
Ll | (1)
takes the form:
indUE>H0168>) s> +5 | t,a>). @

dt
This equation is the original equation of our work. It describes how we see this, the
process of quantum measurement. The fluctuations 6H(a) and § | t, a>, which are included
in the expression (2) impose conditions

<OH(a)>=<0|t,a >>=0. 3)
Here, averaging vector or operator of the random function f (a) is understood as
< f(a)>=[P(da)f(a), “)
Q

where Q ={a} is a set of random events which are observing the dynamics of (2) by the
same measuring device for equally prepared (as accurately as possible) initial states. P (...)
— the probability measure on the set. After spending an average of (2) in the sense of (4),
we obtain

l,ha’|t>

=H|t>+<0H(a)o|t,a>> (35)
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To use equation (5) for the description of quantum measurement, we expand vectors
[t> and <OH(a)d|t,a> in the sum of the eigenvectors vectors observed, which
measures the instrument.

[t>=> c(0)]i>,
<SH(a)3|t,a>>=) ®(1)]i>.

In fact, the last formula is the definition of the measurement process. Substituting the
results of the expansion in equation (5), we get.

Yine; | j>=Y | j><jlH|k>c,+D ®,@)] j>=Dif,(c)] j >,
J k.j J J
that is
¢ = fi (o). (7)
In the derivation of (7) has been suggested that @ j(t ) depend on t only through c,.

Let the equation (7) has Hamiltonian form, that is {ck } = {xk }U {pk} — canonical
coordinates and momentums and (7) can be written as the Cartan equation [15]:

=B Y ere Q=dp v —dHA
odx"  odp,
Turning to the variable action angle J,, &' :
Q=dJ " Nda' —d(H,(J,)+H,(J,,a*)) dt
and Cartan equations take the form:
= 6_9 = 8_!2 =da' — (%
odJ, oda' aJ,

1

+%)dt =dJ, +a—Hl.dt
oJ, oo’

or:

a'i — aP[O(‘]_s) + aHl(Js’aS)

aJ, aJ,
S ®)
Ji —_ aHl(Js’a ).
oa'
Solving the system of equations (8) by perturbation theory [13]:
J=J'+J +., d=a, +a +..
In the first order we get:
oH,(J ", a," + @'t
j = 2H *‘a’ai»’ LD S e, (it ) ©)
a n
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0

Here 0" = and we expand the right side of (9) in a Fourier series. Thus, in the

k
first order perturbation theory, the variable "action" would be:

gl =3 SR
' n i(nka)k) .

We assume that the series (10) for which the resonance condition: nia)i =(0is not

(10)

equal to 0, then, as shown by numerical experiments, the motion becomes random [13].
This allows equation (7) is replaced by the equivalent Langevin equation:

de, ==Y 4y s am, (11
oc,
where dW, — “random force” satisfying the conditions [12]:
<dW >=0,<dW dW, >=Q¢, dt. (12)

Equation (11), in turn, is equivalent to the Fokker-Planck equation for density of
probability p(c,,,t) [12]:

p(ck)zz{ﬁ(algf'f) ple)+ 50~ m(c»} 13

Indeed: for the time derivative of the probability density p(c,,t) of finding the

system at ¢, obtain
< Jdepte, 0 f(e,) = [de L0 16, ) == [dopte, (e, ) =

2
fd +1 of de,dc, +...)=
20c,0c, "

)

— L [depte, L =

Z(—(——dt+dW )) +
1 €p
— | dcp(c,,,t) =
a’tJ. g 1 8°f oU U

Z(zac ” (—gdt AW, )= = di+dW ) + ...

4 s

0 ,U e O
Jae; p(pc)f 2dt “ 3.,

Here we used the integration of the initial Value of the trajectory of the system and
takes into account the fact that the system is Hamiltonian type. Now we average this

expression over all values of the random force dW , all random trajectories of the system.

Then we obtain the following expression
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Jae? fic,)-

1 0%p <deW > o oU
= [ de Z(zac oo Z(—(— P (S

P
which by the arbitrariness of the function f and the COIldlthIl (12) is the Fokker-Planck
equation (13). Its stationary solution has the form:

p(c,)=Cexp(= )- (14)

If we choose U(c,) such that with¢, (U (¢,)=0,andU(c,)>U(C,)for V¢, )is
equalto (1,0, ...), (0,1, ...), ..., it had a min, and
2U(c,)

2U(c,)

— )= (15)

we obtain a simple mathematical model of reduction ket quantum state during the
measurement, since the expansion | t), will give | k) with probability (15). If the depth of

the "potential wa 11" >> (,, the process of reduction leads to a unique result.

p(c,)=Cexp(-

CONCLUSION

The study showed that for the reduction we had to modify the original equation (1)
and submit it in the form (2). The mathematical model also shows that the reduction of the
wave function is specified stochastic nature of the interaction between the quantum system
and the measuring device. This interaction leads to a response 9dJt,a>. Account of the
correlations between, this process leads to the equation (7), which leads to a reduction.
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MaiiopoBa A. H. Mopeib KBaHTOBOro0 BHUMIPIOBAHHS, fIKa NPH3BOJAMTH [0 PpeAyKHii XBHJIbOBOI
¢ynkuii / A. H. MaiiopoBa, 0. /I. Mennuryaos, FO. H. Minaii // Bueni 3ammcku Taspiiicbkoro
HauioHanbHOrO yHiBepcurery imeni B. M. Bepuaxacwkoro. Cepist : disuko-matemarnuni Hayku. — 2013, —
T. 26 (65), Ne 2. — C. 89-94.

B namniit po6oTi moOy1oBaHO MaTeMaTUYHy MOJENb peAyKIii XBIIbOBOI (hyHKLIi. B ocHOBY Mozemi moknaaeHi
inei, po3BuHeHi1 KiliMOHTOBIYEM 1 3aCTOCOBaHO METO]T CTOXAaCTHYHOTO KBAaHTYBaHHS y (opMysIroBaHHI XakeHa.
3anponoOHOBAHO PIBHSHHS, IO BPAaXOBYE CTOXacCTHYHY B3a€MOJII0O KBAHTOBOI CHCTEMH 1 BHMIpPIOBAaJIBHOTO
NPUCTPOI0. 3 IBOrO pIBHSHHSA OTpHMaHO piBHAHHA Dokkepa-IlnaHka, pimieHHs sKOro i CBimT4aTh Mpo
HasIBHICTB PEIyKIIii.

Knrwowuoei cnosa: Kantosa inpopmaTrka, piBHAHHA Llpeninrepa, XBUIb0oBa (GYHKIIIS, PEIyKLIis.

MaiiopoBa A. H. Moae/jib KBAaHTOBOIO M3MepeHUs, NPUBOASILAS K PeIyKUUU BOJHOBOI GyHKuuu /
A. H. Maiiopoga, 10. JI. Menasiryios, 10. H. Munaii / Yuensie 3anucku TaBpHIECKOT0 HAITHOHATIHHOTO
yHuBepcutera uMenn B. U. Bepnanckoro. Cepns : dusmnko-marematndeckne Hayku. — 2013. — T. 26 (65),
Ne 2. - C. 89-94.

B Hacrosie#t paboTe MOCTpOCHa MaTeMaTHuUecKas MOJENb PEAyKIUH BOJHOBOH (GyHKIMH. B OCHOBY Mozenu
MIOJIO’KEHbl UAEH, pa3BuTble KIMMOHTOBMYEM U IPUMMEHEH METOJ CTOXaCTHYECKOIO KBAaHTOBaHUSI B
dhopmynupoBke XakeHa. [IpemioxkeHo ypaBHEHHE, YUUTHIBAIOIIEE CTOXACTHYECKUI XapaKTep B3aUMOACHCTBUA
KBaHTOBOM CHCTEMBbl M H3MEpPHTEIBHOTO MpHOOpa B Tpolecce n3MepeHusa. M3 3Toro ypaBHEHHUS MOTydYEHO
ypaBHeHne Doxkepa-IInaHka, pemeHns KOTOPOTo U CBUACTENBCTBYIOT O HATMINH Py KINH.

Knroueswvie cnoga: Kpanrosas nadopmaruka, ypasaenue llpenunrepa, BoxHOBasK QYHKIHS, PeTyKIHL.
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