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In this article, we have received, the general view of distribution of potential scalar field for “thick” null
string radially expanding in plane z =0. Conditions on potential of a scalar field at which, within the
limits of compression of a scalar field in one-dimensional object, the stress energy tensor components of a
scalar field coincide with components stress energy tensor of the closed null string moving on the same
trajectory are found.
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INTRODUCTION

Now string theory is a promising direction in the development of modern physics.
Because fundamentally gives the opportunity to resolve the contradictions between
quantum mechanics and general relativity. The idea of string holography successfully
develops, whereby quantum field theory on the p-brana can be the equivalent of the string
theory in the full dimensional space. Moreover, in the classical limit of string theory arises
generalized theory of gravity (supergravity), under which it is possible to reproduce the
results essentially quantum field theory on the p-brane in a purely classical manner [1, 2].

Besides studying of string theory allows us to understand the deepest moments of the
birth of the Universe in order to understand why it occurred, and what lies ahead of her?
But it is impossible to imagine studying the evolution of the Universe without studying the
properties of its components. That's why this article is a studying of null strings, which are
an integral part of both the string theory and the universe in general [3].

Objective of article:

e Construct the general view of distribution of potential scalar field for “thick” null

string radially expanding in planez=0.

e Find conditions on potential of a scalar field at which, within the limits of
compression of a scalar field in one-dimensional object, the stress energy tensor
components of a scalar field coincide with components stress energy tensor of the
closed null string moving on the same trajectory.

The components of the energy-momentum tensor for a null string have the

following form [4]:

T"”’E = y.[drdax"fx,';é“‘(xl —xl(r,a)), (1)
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where the indices m,n,! take on the values 0,1,2,3, the functions x" =x" (2',0)
determine the trajectory of a null string, 7 and o are the parameters on the light surface

g mn

environment, ¥ =const. In the cylindrical system of coordinates, x° =t, x' = £,

of the null string, x";’ =ox"/or, g=

, &, 1s the metric tensor of the

x> =60, x’ =z, the functions x" (r, a), that determine the trajectory of a closed null
string, radially expanding in a plane z = 0, have the following form:
t=r,p=r,l9:6,Z:O,Te[O,+oo). )

Using the symmetry of the trajectory (2), the general expression of the quadratic
form, which describes the motion under consideration null string can be presented as

ds? =e* (dt)’ — Aldp)’ — B(d8) —e* (dz)’, 3)
where v, 1, A, B depend on the variables ¢, p,z .

Since trajectory (2) must be one of the solutions of the motion equations of a null
string, additional restrictions imposed on the metric functions can be obtained, whose
fulfillment provides the constancy of a trajectory of the null string specified by (2).

The motion of a null string in the pseudo-Riemannian space is determined by the
system of equations [3]

m m . .p..9 _
xT +I0 x2x% =0, “4)
m_n __ m_n __
gmn'x,rx,r - 07 gmnx,rx,a - O’ (5)

where F}’fq are the Christoffel symbols. Putting down the first of Eqgs. (5) for (2), one can

make sure that it has form e — A = 0. Consequently,

e =4, (6)
whereas the rest of equations of system (4), (5) for (2), (3) under condition (6) are reduced
to the single equation v , + Vv, = 0, which yields

V= v(n, z), @)

where 77 =1¢— p. Analyzing the system of Einstein equations and using conditions (6),
(7), the dependence of functions of the quadratic form (3) can be redefined as

U= ,u(77, z), B= B(?],Z). (8)

In this case, the Einstein system itself is reduced to the equations

B > (B, B &H
S U Y R P B DL O
B,zz 2 B,z ’ B,z _
V,zz + 2B +(V,z) [23] ﬂ,zv,z ﬁ(ﬂ,z V,z)_ O’ (10)
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7772+2V _lﬁﬁ_ﬁv _& _2 1% —O (11)
B mTapp Bl gl HaTE

B B

T,‘1(2"/,22 +3(V,z )2 _2V,zlu,z)= 0’ (V,Z)2 +V,z éz =0. (12)

With the use of the obtained conditions (6) — (8), expression (3) can be presented in
the form

ds? = e () - (dp) )- B(d0) — ™ (dz . (13)
where v, 11, B depend on the variables 77,z .

Later, using the result of [5], we consider the components of the zero-string energy-
momentum tensor as the limit of a "thick" distribution, in which we choose as a real
massless scalar field, because the task at hand, we consider the scalar zero object.

1. SYSTEM OF EINSTEIN EQUATIONS FOR THE «THICK» PROBLEM

The components of the energy-momentum tensor for a real massles scalar field have
the form

1
Taﬂ = (D,aw,ﬂ _EgaﬁL ’ (14)

where L =g PouPps P, =0@/0x", @ is the scalar field potential, and this indices

a, [ take on the values 0,1,2,3. To provide the self-consistency of the Einstein equations
constructed for (13), (14), we demand that

T,=T,m02)—>p=¢1,2). (15)
Putting down Eq. (14) for (13), (15), we obtain
2(v-p) 2(v—p)
2 € 2 2 € 2
1—2)0 = (¢,17) + ((0,2) s T;l = (¢,77) - ((D,z) s

2

Be™"
62 (¢,z )2’ Ty = %((0,2 )2’ Ty, = _((0,77)2’ Iy=-T,=9¢,p.. (16)

The system of Einstein equations for (13), (16) can be presented as follows

2
B , B B 2
zv,ﬂ'u,n +2V,'72_;_'U,m7 —(,u,,]) - 2; +(ﬁ] =Z(¢J7) ) (17)

T22=—

B B.Y B
V,zz+i+(V,z)2—(—’Z] —V,zﬂ,z——’Z(u,z—V,z)=—%;c(¢,z)2, (18)

2B 2B 2B
-B B_ B, B B
—’”z—2vz+l—’z—’”+—”7vz+—’zlu +2uv. =20 @., (19)
B ST7: 2 B B B B B >17 R/ R/
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BZ
W+l ) - =2 () == 2 () @)

Let us consider system (17) — (20) for the distribution of the scalar field already
concentrated inside a “thin” ring, with the variables 77 and z taking values in the interval

ne[—An;An], ze[—Az;Az], (21)
where An and Az are small positive constants that determine the “thickness” of the ring,
An <<1, Az <<1. (22)

With a further contraction of this “thin” ring into a one-dimensional object (null
string),
An—0, Az—0. (23)
The space, where such a “thick” null string moves and for which the variables 7 and
z take on values in the interval
ne (— oo;+oo), ze (— oo;+oo), (24)
can be conditionally divided into three regions:
e region I, for which (Fig. 1)

1 €(—0;—An)U(An;+0), z (—o0;+0), (25)

e region II, for which (Fig. 1)
nel[-An;An], z e(—w;—Az) U(Az;+0), (26)

e region III, for which (Fig. 1)
ne[—An;An], ze[—Az;Az]. (27)

Fig. 1. Schematic section of space by the plane & = const and decomposition of the
space on 3 regions (25) — (27) depend on the variables z,77 . Region III marked in black.

Since the contraction of the scalar field into a string mast result in the asymptotic
coincidence of system (17)— (20) with the system for a closed null string (9) — (12) we
obtain for the regions I, II (Fig. 1).
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0,0, 50, ¢,-0, (28)
for the region I1I, in the general case,
® ?
Pru <1, ( ~Z )1,11 <1, ( '7)1,11 <1 (29)
P (0 )111 (1) m

where ?1.1 are values of the scalar field potential in the regions I, IT (Fig. 1), @m are
values of the scalar field potential in the region III (inside the “thin” ring), equality is
realized on the boundary.

Comparing the system of Einstein equations for a closed null string (9) — (12) with
system (17) — (20), we may conclude that, under the contraction of the scalar field into a
string of the required configuration, i.e., at A7 —>0, Az—0

2 2
((0,2) n—0, z—0 —0, (goﬂ) n—0, z—0 >, (go’zgpﬂ)
According to (28), the scalar field potential in region I at any fixed value of

1 =1, € (—0;—A1n) U (An;+0) and all values of z & (—o0;+o0)

@(17,,2) >0, G1)
Considering the scalar field potential distribution at any fixed value of
n=mn,c [—AU;AU], (regions Il and III), if z (—oo; —Az) U (Az; +oo) (region II), must

77_)0’2_)0—>0. (30)

be realized

@(1,,2) >0, (32)
whereas, for z € [—AZ;AZ] (region IIT)

©(1M9,2) 11 >1. (33)

@(1>2) s

2. SCALAR FIELD POTENTIAL DISTRIBUTION FOR A «THICK» NULL STRING

For the conditions (31)—(33) it is suitable to present the scalar field potential
distribution in the form

o(z,n)= —ln[a(n) + ﬂ(n)f(z)], (34)

where the functions (77) and A4 (77) are symmetric with respect to the inversion of 77 to

_77:

a(n)=a(-n), 4(n)=A(-n). (35)
The function a(n) +/1(77)f(z) is bounded
0<a(n)+A(n)f(z)<1, (36)

and the scalar field potential specified by (34), in accordance with (36), can assume values
from
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@ =0, npu a(n)+ﬂ(77)f(z):l, 37)
to
¢ —> oo, mpu a(n)+A(n)f(z)—>0, (38)
Moreover, according to (31) and (37), in region I,
a(n)—1, A(n7)—0. (39)

Since, according to (32), the scalar field potential tends to zero in region II, the
following condition must be met at 7 e[—A?];An] and any fixed value of

z =z, €(—o0;—Az) U(Az;+0)

a(n)+2(n)f (z) > 1. (40)
In region III, for the same values of 77 € [—A U;An] andat z=z, € [—AZ;AZ]
0<a(n)+4(n)f(z)<l1. (41)

Equation (40) implies that, for all ZE(—OO;—AZ)U(Az;+OO) the values of the

function f (z) tends to constant

f(z)—> f, =const. (42)
Moreover f, # 0, while the functions a(n) and 2(77) are interconnected
/1(77):(1—05(77))//‘0. (43)
Substituting (43) into (42) we obtain for region III
0<a(n)+(1-a(n))f(z)/ f, <1, (44)
This together with (38) and (44) mean that, at ¢ — o0
a(n)—0, 1(z)—>0. (45)

Thus, the functions a(n) and f (Z) in the expression for the scalar field potential

(34) are bounded and, for any z € (— OO;+oO) and7n € (— OO;+00), take on values in the
intervals

0<a(n)<1,0< f(z)< f,. (46)
The distribution for the function f (z) at z e (—oo; —AZ) U (AZ; +oo) is determined
by Eq (42), at z — 0, and, according to (45)

f(z)—>0. (47)
Differentiating (34), with regard for (43), over z and 77 we obtain
a,(1-1(2)/ f I-a(n))f./ [
B o 10 S R 1) | VALY SN

a(n)+(1-a@)f(z)/ 5, a(m)+(1-a@)f(2)/ 1,

74



SCALAR FIELD POTENTIAL DISTRIBUTION ...

Using (39), (40), (41) for (48) we obtain, that in regions I, Il: ¢_ —>0, ¢, —0,

which coincides with (28). In region III (puc.1), at z — 0, with regard for (47), the first
of Egs. (48) can be presented in the form

0, ==a,/a(n), (49)
This, according to (30), at A —0, Az — 0, yields

‘a’,] /0{(77)‘—)00. (50)
With regard for (48), the second of Egs. (58) at 7 — 0 can be presented as

0. ==1.11(2). (51)
According to (30), at Az —> 0, Anp—>0

f./f(z)—0. (52)

On the other hand, considering Eqgs. (48) in some small neighborhood of the circle
n=0,z=0, ie., inside the region, where the scalar field is concentrated with

/(2)

——=<<1and a(iy) << 1 (according to (37), (38)), we can put down

O __alan)fISGE)
N

Then, according to (37), the following condition must be satisfied at Az — 0,
An—0

(53)

(a’nf,z)/(a(n)f(z))ao. (54)

As an example, the functions a(n) and f (Z) satisfying the found conditions can

be chosen as follows:

a(n)= exp{—m}, (55)

il AL e

where the constants & and G determine the size (“thickness”) of the ring with the scalar

field concentrated inside with respect to the variables z and 77, respectively. Namely, as

follows from (55), (56), at
Az—>0,5E—>0; Ap—>0, ¢ >0, (57)
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while the positive constants & and g provide the fulfillment of conditions (47), (50),
(52),at z—>0, n—>0, Az— 0, Ap — 0. Namely, at
Az <<1, e <<1; An<<l, u>>1, (58)
With a further contraction into a one-dimensional object (null string), i.e., at Az — 0
, Am—0
e—>0, u—>w, (61)

Using (43), (55), (56) for (34) we obtain the expression for one of the possible
distributions of the potential of the massless scalar field, whose components of the energy-
momentum tensor asymptotically coincide with those of a closed null string under
contraction into a one-dimensional object.

Fig. 2 presents the distributions of the function a(n7)+(1—a(n))f(z)/ f, in the

region 77 € [—10;10], ze [—10;10], for the functions «(7),/(z), specified by
Egs. (55), (56), corresponding to the following choice of the constants a) &=¢c=pu=1;
0) E=¢=pu=4. One can see from these figures that, with increasing values of the

constants &, ¢, the region of the non-unity function a(n7) +(1—a(7)) f(z)/ f, (i.e., the

region, where the scalar field is concentrated, and the scalar field potential isn’t tend to
zero) contracts, which corresponds to a decrease of the “thickness” of the ring with the
scalar field concentrated inside.

Fig. 3 — 5 present different space-time sections (depends on ¢, p, ) for a closed
«thick» null string radially expanding in a plane z=0 in region 77 € [—10;10],
zZ€ [—10;10], for the functions a(n), f (Z), defined by the equalities (55), (56). Note
that in the presented Fig. 3 — 5, black shows an area in which ¢ — 0.

Fig. 2. The distributions of the function a(n)+(1-a(n)f(2)/f,, where,
ne [—10;10], ze [—10;10] at:a)é=¢c=u=1,b)é=¢c=u=4.
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a) b) c)
Fig. 3. Scalar field potential distribution specified by (34), (55), (56) with depends on
t,at £=0.01, =13, u=4, ¢=13, z=0.01, pe(0,20)2 a) t=5,b) t=10,

c) t=15.

a) b) c)
Fig. 4. Scalar field potential distribution specified by (34), (55), (5§6) with respect to
p at £€=001, u=4, ¢=13, z=0.01, pe(0,20), t=10: a) £=0.2,
b) £=0.3,¢) £=0.6.

a) b) c)

Fig. 5. Scalar field potential distribution specified by (34), (55), (56) on the surface
O=const; =001, pu=4, ¢=13, z=0.01, pe(0,20), t=10:2) £=0.3,b)
£=05,006=13.

From the Fig. 3 — 5 immediately follows that with increasing values of the variable ¢
(Fig. 3) radius of the "thick" null string increases (null string extends radially in a plane
z=0), and with increasing values of the constants &, ¢ (Fig. 4, 5) region decreases,
where scalar field potential isn’t tend to zero. In other words, the “thickness” of the ring,
where the scalar field is concentrated, decreases.
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CONCLUSIONS

In this article, we have received, the general view of distribution of potential scalar
field for “thick” null string radially expanding in plane z = 0. Conditions on potential of a
scalar field at which, within the limits of compression of a scalar field in one-dimensional
object, the stress energy tensor components of a scalar field coincide with components
stress energy tensor of the closed null string moving on the same trajectory are found.

The example of the potential distribution of a scalar field, corresponds to the
conditions obtained. The next stage of the proposed work will be the integration of the
Einstein equations for the scalar field obtained distribution and the analysis of the
gravitational field produced by radially expanding null string.
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B pabote mpemnoxxeH oOmmii BUJ pacrpeseieHus MOTeHIHaNa BElleCTBEHHOT0 0e3MacCOBOTO CKasIPHOTO
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