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The spectra of elementary excitations have been investigated for spin-2 non-Heisenberg magnetic with the account
of all spin invariants. Analysis of the spectra of elementary excitations allowed to construct the phase diagram of the
magnet at various relationship between the exchange integrals. In case of single-sublattice magnet, there is
equivalence with the phase states and excitation spectra behavior of spin-2 Bose-gas of ultracold atoms.
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INTRODUCTION

Recently, the investigation of magnetically ordered systems with the account of high-
order spin invariants has drawn great attention [1-4], because of the fact that such systems
are equivalent to the Bose-condensate of “cold” atoms. This condensate can be obtained
with the help of various “atom traps™ [5, 6]. One can make one or another type of interaction
corresponding to spin invariant prevailing by varying trap’s parameters. As it was noted in
[1], the investigation of such systems can be carried out within the frameworks of the
exchange Hamiltonian. Research of the model Hamiltonian with the account of high-order
spin invariants [7, 8] allows to find the phase states of the system and also to determine the
behavior of excitations spectra near the phase transition lines. Besides, it is possible to
determine the relationship between the exchange constants and the parameters of scattering
lengths of the corresponding spin systems. It was found during investigations [9, 10] that the
increase of the spin of a magnetic ion results in the emergence of the new quantum effects,
in particular, to the realization of new nematic phases: tetrahedral and antitetrahedral. It was
shown that the geometrical image is a biaxial ellipsoid, while in spin-1 case [11] the
geometrical image of the nematic phase is single-axis ellipsoid. It should be also noted that
there appears additional parameter in tetrahedral (antitetrahedral) phase — the pseudospin
which transforms like the real spin vector at time reflection ¢+ — —¢. The next stage in the
investigation of this system is the investigation of the behavior of the spectra of elementary
excitations in the vicinity of the phase transitions lines.

1. PHASE STATES

The aim of the present work is to investigate the phase states and spectra of
elementary excitations in the vicinity of the phase transitions lines of the isotropic spin-2
ferromagnetic with the account of the complete set of spin invariants. The Hamiltonian of
such a system has the following form:
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’H== > {J (S8 )+ Ko (S ) + Do (SuSy ) + Frr (S5 ) } (1)
n#n'
where J, K, D, F are the exchange integrals corresponding to various spin invariants. It is
supposed that the system considered is at low temperature (7 << T¢ where T¢ is the Curie
temperature), as the quantum properties of the system are more evident in this case.
Before we proceed to the investigation of the spectra, we want to remind which
phases realize in the system at various relationships between the constants of exchange
interactions [10].

1. If the relationship between exchange integrals is such that J,, > K,, D, [y, then the

wave-function of the ground state is given by ‘t//gm,> =|2>. Therefore, the averages on this

2 2 2
state are <SZ> =2, <(SZ) > = 4,<(Sx) > = <(Sy) > = 1. This state is ferromagnetic (FM).
2. At K,>J,,D,,F,, the wave-function of the ground state is

‘V/gr.st.> = %cosﬂd 2> + | —2>) + sinﬂ| 0> . This state is characterized by the

quadrupolar order parameters: qg = 3<(S Z)2> —6=06c0s2[,
7 = <(Sx)2> — <(Sy)2> =23sin2p, because (S)=0. This spin state is “spin

nematic” and will be denoted as N.

3. And there is one more case: D, > K, [ . In this case, the wave-function of the

ground state looks like ‘l//gr.st.> = %(|2>+\/5 |—1>). This phase is characterized with

order parameters of higher order in spin operators S': qg =10,

qg” — l(<(§+)3>+<<S_)3>] = 4\/5, because <SZ> =0, qg = q% =0. This phase state

2

will be denoted as TQ-state.

In case of negative constant of Heisenberg exchange interaction Jy < 0, the two-
sublattice magnetically ordered structures realize in the system:

4. Antiferromagnetic (4FM) state. In this state, only axial moments are differ from

Zero: <S z> =2 qg =6, qg =6, gy =12 The order parameters of the second sublattice

are <SZ>:—2, @ =6,q9)=-6,q]=12.
5. And finally, the ATQ-antitetrahedral phase, characterized with tensor component
of the higher order: qg =10, q33 = 4\/5 , qg =-28, qi = 2«/3 in the first sublattice,

and qg =-10, qg = —4\/5 , qg =-28, qi = 2\/5 in the second sublattice.
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2.SPECTRA OF ELEMENTARY EXCITATIONS OF SINGLE-SUBLATTICE
NON-HEISENBERG SPIN-2 MAGNETIC

The spectra of elementary excitations are determined by the poles of the Green function [1]:
G (n;n',7) = ~(IX () X (7)), )
where X “(7)=exp(H7) X exp(—Hr) are the Hubbard operators in the Heisenberg

representation; 7' is the Wick operator; # = Hy + Hpy, [12, 13]. The further evaluations

will be carried out within the mean-field approximations; therefore we can restrict ourselves
with the dynamic part of the exchange Hamiltonian which can be presented as follows:

1 .
Hu=-33 3 (@) A e(B) | AX T AXY ()

where AX“ = X*“ —<X a>0, and the components of the 24-dimensional vector c(a)

are determined from the relationship between the spin and tensor operators with the
Hubbard operators; A, , matrix is given by

A =% B @ o 55 i @ )e M (168 @31 @30i @20i)e
2 2 160

@, R . R .
® %(219 ®10] ® 5] ®70] ®351),

where E is unit matrix, [= (0 lj.
1 0
The derivation of the dispersion equation determining the spectra of elementary
excitations is given in Refs. [12, 13]. The equation is valid at arbitrary spin value,
arbitrary symmetry of the single-ion anisotropy, and arbitrary temperature (except the
region of fluctuation). The dispersion equation can be presented in the following form:

det |1+ x;]=0.7,j =1,..,24. (4)

Solutions of equation (4) determine magnon spectra in different phases.

Let us proceed with the analysis of the spectra of elementary excitations for each phase.

1. Using the explicit form of the order parameters in the FM-phase, we can obtain
the magnon spectra in the long wave-length limit (at £ — 0):

gl(k):4(j0+9§k2); (5)
& (k) =4| 2(Jy +3K, ) +3(A+y+138) k> |; ©)
& (k)=2(a+44+16y +645)k*; (7)
£4(k)=6[ 2(Jy +3Ky ) +3(r —40)&* ], ®

where J, =2J,— K, +41D,—79F, and K, =K, —5D, +43F,; J, —J, = ak?,

62



SPECTRA OF ELEMENTARY EXCITATIONS AND PHASE DIAGRAM ...

K,—K, =Ak*, Dy—D, = yk* Fy—F, = 6k*.
As it is seen from Eq. (5) and (8), the magnon spectra soften at Jo=0 and

jo + 3]?0 =0, i.e., the FM-phase becomes unstable. Thus, the phase transition from the
FM-phase occurs along the magnon branches &, (k) and &, (k) It should be noted that

nevertheless the gap in the spectrum &, (k) has the same form as in the spectrum &, (k) ,

the phase transition occurs along the branch (8), as the magnon “velocity” in this branch is
higher, than in the branch (6).

2. Now consider the spectra of elementary excitations in the N-phase in the long
wave-length limit (with the account of the notations, introduced above):

& (k) =48] (A—=2y+285) k" sin’ B+3-5k* cos” 3 |x o
x[3[50 sin® B — jo cos? ,8];

&5 (k) =144K (A -2y +285)k>; (10)
&34 (k) =12[ (=27 +318)K + (A -2y + 255) I cos (23 + 7/3) | x

x| 3Ky —Jo + (3K, +Jy )cos(2 % /3) | (1)

It is seen that the magnon spectra (9) — (11) in the N-phase are linear in the wave-
vector far away from the stability points. The branch & (k) softens at line J, o =0 when
parameter [ =0 (parameter f is re-determined exactly), and takes the form
g (k)= 365k? . Consequently, the line J, =0 is the line of the phase transition N— FM

phase, at this, the spin nematic tends to single-axis nematic near this line. Besides, the

magnon spectrum (9) becomes unstable at [?0 =0, and at ,B:% takes the form:

& (k) = 36( y—50 ) k?, and the order parameters of the N-phase tend to the parameters
of the “flat” nematic near this line. It should be noted that the spectrum (10) also loses
stability at line K,=0, and is proportional to k squared: &, (k) =36(7/—55 )kz.
Besides, the line of excitations (11) is degenerated which is related with the degeneracy of
the energy levels of a magnetic ion E, = E | in the N-phase at =0, and § = %

3. Now consider the spectra of elementary excitations in the 7Q-phase. As it was
mentioned above, the three-fold degeneracy of the excited energy levels of a magnetic ion

is observed in this phase which results in coincidence of three branches of elementary
excitations. In the long wave-length limit these spectra have the following form:

£ia 5 (k) =144(J, + 3K, )(y —45)k*; (12)

~ 2

& (k) =144(=K, +(A-2y +285) k) . (13)

63



KOSMACHEY O. A.

As it follows from Eq. (12), the spectra & ; 3 (k) are linear in the wave-vector & far from
the line J, +3K, =0, but are square in k near the line J, +3K,=0:

i.e., the magnon spectra soften
on this line, and the line

jo +3I?0 =0 1is the line of the

phase transition 7Q — FM phase.
The spectrum (13) is unstable at

the line K,=0 and becomes M
square in k:

& (k)=36(y—58)k>.
Consequently, the line K, =0

A

v

10

is the line of the phase transition
TQO- N - phase.

Thus, the analysis of the
magnon  spectra  allows to
construct the phase diagram m of

the system considered (see ) ) ]
Fig. 1). The coincidence of the  Fig. 1. Phase diagram of non-Heisenberg

spectra at the lines of the phase  spin-2 ferromagnetic on the -plane.
transitions testifies that these

phase transitions are of the second kind. It should be noted that this phase diagram completely
coincides with the phase diagram, obtained for ultracold neutral atoms with =2 [5, 6].

3. SPECTRA OF ELEMENTARY EXCITATIONS OF TWO-SUBLATTICE NON-
HEISENBERG SPIN-2 MAGNETIC

As before, the spectra of elementary excitations are determined by the poles of the
Green function. Using order parameters, determined above, we can obtain the spectra of
elementary excitations in the corresponding phase states.

1. AFM-phase. The magnon spectra in the AFM-phase can be presented as the
difference of two squares, consequently, their behavior in the center of the Brillouin zone
(k = 0) and on the boundary (k =), are almost equivalent. The magnon spectra in the
AFM-phase in the long wave-length limit (£ — 0) look like:

& (k) =16(J, ~18F, +95k> )(J, ~95K” ); (14)

&3 (k) =4 Jo Ky —=3(A =5y +430)k* || Ty ~ 3K, —6(K, — 5D, +43F) |; (15)
&3 (k) =4] Jy = 3Ky — 6(Ky — 5D, +43Fy) |(a =54+ 34y ~1798)k>; (16)

&3 (k) =9(Jy 3Ky +6(y - 65)k*)(Jy - 3K, +12(Dy —6F,)).  (17)
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The spectrum (14) softens at the line ,7(; =2J,—-K,+41D, —61F, =0. This line

describes the phase transition from the 4FM-phase into the N-state.
The energy gaps in spectra (15) and (17) decrease while approaching to the line of
the phase transition into the 47Q-phase. Both branches are unstable at the line of the

phase transition the AFM-ATQ phase J.—3K, =2J, —4K, +38D, —100F, =0;
however, the velocities of the “spin” waves are different: the phase transition occurs along
&y (k), because its velocity coincides with the velocity of the wave in the ATQ-phase at
line j(; —31%6 =0.

2. Consider the spectra of elementary excitations in the N-phase. In the long wave-
length limit at £ — O

& (k)= 98[(1{0 -2D, + 28Fo)sin2 B +3F, cos” ,B} X [3]%6 sin® 3 +
+Jycos” f—(2a— A+41y —708)k* cos® B —9(y —55)k” sin’ ,[)’] (18)
& (k)=144(K, — 5D, +43F, ) (1 -2y +283)k’; (19)

&34(k)= 48LK0 —2D, +31F, +(K, —2D, +25Fb)cosL2ﬂi§]+ a’szx
» (20)

where ' and " are the combinations of a,A,7,0 .

As it is seen from Eq. (18), the spectrum softens at the line of the phase transition
into the AFM-phase (at =0): 70' =2J,—-K,+41D, —61F, =0. On the other hand,
this spectrum also softens at the line of the phase transition into the A7(Q-phase (at
p= % ): IZ(') =K, + D, +13F, =0. The branches ¢, (k)—g4 (k), as it easy to
notice, do not soften in the vicinity of the phase transitions lines
J=2J,—K,+41D,—61F, =0 and K, =K, + D, +13F, =0.

3. Now consider the spectra of elementary excitations in the 47Q-phase. There observed
a three-fold degeneracy of the excited energy levels of a magnetic ion E;, = £ | = E; which
results in coincidence of three branches of elementary excitations &, (k)=g¢, (k)=¢, (k).
In the center of Brillouin zone (k£ — 0), the spectra are given by

£ (k) =72 =Ty + 3Ry + (20— 4B+ 4Ty ~1548)I | (D, —6F); 21

~1 ~ 1

&3 (k) =144] Ky — (B -2y +285)k | 6(Dy —5F, ) - Ky |. (22)
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The gap in spectrum & ; 5 (k) vanishes at the line of the phase transition ATQ-AFM
phase J, 0 — 3K o =2J,—4K, +38D, —100F, =0, and the spectrum becomes linear in k.
The spectrum ¢, (k) becomes unstable at the line of the phase transition ATQ-N phase

IZ(') =K, + D, +13F, =0, and becomes linear in k. At the boundary of the Brillouin zone
(k — ), the spectra look like:
6123 (k) =36] Jo ~ 3K, +18(Dy ~6F, ) — (20— 4B+ 47y ~1548) k> |(y —65) K’
&3 (k) =144] Ky —(B—2y +288)K° |x[ (B2 +288)k” = Ky +6(Dy ~5Fy) .
Spectrum & ; 5 (k) is linear in the wave-vector k; however, it is stable at the phase

boundaries. Behavior of &, (k) at the boundary of the zone is equivalent to the behavior in

the center of the zone. Analysis of the spectra if elementary excitations and of the free energy
density allows to construct the phase
diagram of the two-sublattice non-
Heisenberg magnetic. This phase

A

diagram on the (J',K')-plane is
given in Fig. 2.

CONCLUSIONS ATOQ

The carried out investigations _»
of the spin-2 non-Heisenberg
magnetic allow to stay that the
account of high-order spin AFM
invariants is essential and leads to
the realization of the magnetically
ordered states with more complex
structure, than ferro- or
antiferromagnetic. The nematic

phase together with the tetrahedral ) )
and the antitetrahedral phases F1g.2. Phase diagram of two-sublattice non:

belongs to such more complex Heisenberg spin-2 magnetic on the -plane.
states. These  phases are

characterized with that their

magnetization (per site) equals zero, while the states, realized in them, are magnetically
ordered, and the order parameters are the components of the tensor of quadrupolar
moments. The states with zero magnetization per site, but with finite multipole order
parameters are purely quantum effect [14]. Nevertheless the fact that magnetization equals
zero in these phases, these phases are different, because they have different ground states,
different topology in the spin space, and, consequently, different symmetry. The key
feature of these phases for S =2 is their more complex structure (the geometrical images
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in the spin space), in comparison with the structure of the nematic phases, investigated
previously for =1 and §=3/2 [9-11]. Thus, the nematic phase is a single-axis ellipsoid
in spin-1 magnetic; while its geometrical image in the case considered is “goffered” bi-
axial ellipsoid which loses its “goffering” and becomes single-axis only at the lines of the
phase transitions. Besides, the antinamatic phase is absent in spin-2 magnetic, while it is
observed in magnetic with the spin of a magnetic ion S=3/2. However, the
tetrahedral/antitetrahedral phase can realize in the system under consideration which, in
some way, is analogues of the antinematic phase. However, the tetrahedral/antitetrahedral
phase has more complex geometrical structure (in the spin space) in comparison with the
antinematic phase in spin-3/2 magnetic; however, similar to the magnetic with S=3/2 the
tetrahedral/antitetrahedral phase has additional order parameter — the pseudospin & which
is described by non-zero averages from expressions cubic in spin operators. It should be
noted that the appearance of the states with the pseudospin order parameter is possible only
in non-Heisenberg magnets with S> 1, because this parameter describes with non-zero
averages from expressions cubic in spin operators.

Thus, the mean-field analysis of the non-Heisenberg magnetic with spin-2 allowed us
to describe both, the dynamic, and the static properties of the system, to reveal formation
peculiarities of the phases with multipole order parameters, and to construct the phase
diagram of the system.

This work was supported by the State Fund for Fundamental Research of Ukraine.
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B pabote nccnenoBaHbl CIIEKTPHI SJIEMEHTAPHBIX BO30YKICHHI HETeH3eHOSProBCKOr0 MarHeTHKa CO CIIMHOM
MarHUTHOTO WOHAa 2, TpPH YydYeTe BCEX CHHHOBBIX HMHBAapHAHTOB. AHAJIH3 CIEKTPOB 3JEMEHTAPHBIX
BO30YKICHUH IO3BOJMI ITOCTPOUTH (DAa30BYI0 IHMArpaMMy MarHETHKa IIPH Pa3IMYHBIX COOTHOIICHHUSIX
OOMEHHBIX HHTETrpajJoB. B ciyuae OIHONIOIPEIIETOYHOrO MAarHeTHKa HMMEETCS COOTBETCTBHE (DAa30BBIX
COCTOSIHUH ¥ TIOBEJICHUSI CIIEKTPOB BO30YK/IeHHUs 003e-ra3a yJIbTPaxoJOAHBIX aTOMOB C S=2.

Knwuesvle cnosa: Hereii3eHOCProBCKHM MarHeTHK; (a3oBble Mepexonbl; omeparopsl Xabbapia;
HeMaTu4ecKas (asa; Terpadapuueckas dasa.
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