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We investigate optical properties of nanoshells (small composite clusters composed of a dielectric core and a
metal shell; contribution of the shell dominates in the optical properties of the whole cluster) in the frequency
range far from plasmon resonance. In particular, nanoshells with the shape of a stretched rotation ellipsoid are
considered. For such shell-type particle the electron wavefunction, the electron energy, the wavenumber
spectrum, and the matrix elements of corresponding optical transitions were found. Using these quantities, the
classical optical conductivity of such shells (the quantum effects are not considered) and the quantum optical
conductivity (relevant addendums for the classical conductivity that are caused by the quantum effects like the
electron spectrum discreteness) were found. Oscillating nature of the dependence of these addendums on the
incident light frequency is established.
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INTRODUCTION

Nanotechnologies that use metal nanoparticles become popular recently. As a further
development of these technologies, new technologies that use so-called nanoshells [1-4]
have become possible after this type of nanoparticles have been obtained. A nanoshell is a
composite nanoparticle that consists of a dielectric core and a thin metal shell.

Technical applications of metal nanoparticles in common are mostly based on their
unique optical properties. For instance, these particles can effectively absorb light on a
given wavelength. Composite nanoparticles of this type represent a special practical
interest because they allow widening of the operating range of work wavelengths in
comparison to traditional solid metal nanoparticles. Also, nanoshells turn out to be rather
promising for a number of technological applications (especially in medicine and biology,
see, for example, [4]) because their optical properties can be regulated more flexibly than
in traditional systems. This flexibility appears because the internal and the external radii of
the metal shell (that dominates in the optical response of the whole particle) can be
changed independently.

It should be mentioned that such shell-type particles have become of particular
interest quite recently. They have been studied intensively both theoretically [5-11] (using
classical and quantum approach) and experimentally [3,5,12,13]. However, their optical
properties have been studied near plasmon resonance for the most part. The articles that
investigate contribution of individual transitions into the light absorption (the infrared
spectrum mostly; experimental studies of thin metal films and small metal particles in the
infrared spectrum are represented, for example, by [14]) usually consider one of two
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opposite limiting cases. The first case corresponds to the situation when distances between
electron quantum levels are small as compared to the light quantum energy, and the sum
over electron states is replaced with an integral. The second limiting case corresponds to
the situation when distances between energy levels are of the same order with the light
quantum energy, and only two or three levels are to be taken into account. However, a
typical shell has much more of actual electron energy levels. On the other hand, in this
study we demonstrate that the quantum effects related to the electron energy quantization
within the shells cannot be neglected. The reason is that the energy states for a thin shell
are quasi-one-dimensional, so the distance between them becomes greater as the shell
becomes thinner. Related theoretical studies for thin metal films [15] show that such
effects make an essential contribution to the film optical properties in the infrared
spectrum that we consider.

Note that an oscillating dependence of electrical and optical properties of a metal
nanowire on its thickness, similar to the dependence obtained in the current article, was
observed experimentally in [16]. Such a dependence for a solid metal nanowire indicates
that similar quantum effects in shell-type systems are much stronger. Theoretical studies
of thin metal films [15] also show this quantum size effect.

Furthermore, studies on the subject mainly focused on the magnetic absorption (see,
e.g., [17-19]), which represents only one component of the total light absorption (this
component is related to the magnetic vector of electromagnetic wave). However, in small
metal particles the prevalence of the magnetic absorption or the electric absorption is
determined by the particle size, particle shape, and the electromagnetic wave frequency
[20].

It is important to note that optical properties of small metal particles depend strongly
on their shape (see, for example, [20]). This makes necessary separate studies of
nanoshells of different shapes, too. Most theoretical studies focused on the cases of
spherical and cylindrical shell (see, e.g., [21]). This makes an investigation of the single-
electron optical properties of an ellipsoid nanoshell with consideration of above-
mentioned quantum effects especially important.

In this work, we perform a theoretical study of the optical properties of ellipsoid
nanoshells. We obtain the wavefunctions, the wave number spectrum and the energy
spectrum for an electron in a nanoshell with the shape of a stretched rotation ellipsoid.
Using them, we obtain the matrix elements of the optical transitions (electric absorption)
in single-electron approximation for frequencies far from plasmon resonance and, finally,
the optical conductivity of above-mentioned shells.

1. SETTING OF THE PROBLEM. GENERAL EXPRESSION FOR THE OPTICAL
CONDUCTIVITY OF A SMALL METAL PARTICLE

Let us consider a nanoshell with the shape of a rotation ellipsoid and an
electromagnetic wave that falls on it. We consider single-electron light absorption in such
particle. As we mentioned before, the metal shell dominates in the optical response of the
whole composite nanoshell. So, we can model our composite nanoshell with just an
ellipsoid metal shell.
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Size of the particle is considered small comparing to the incident light wavelength, so
the field of the electromagnetic wave can be considered uniform on the distances of the
order of the particle size. Also, the nanoshell is considered thin enough so the local field
inside the shell is approximately uniform (see the chapter “Local field in an ellipsoid
nanoshell”). (Local fields in spherical nanoshells were studied theoretically, for instance,
in [3] with references on [22-24].)

Considering the symmetry of our system, it is convenient to use the spheroidal
coordinates (&,77,¢) with the constant parameter a (see the Appendix). Let’s consider a
shell limited by two rotation ellipsoids. The ellipsoids are described by the equations
&=¢&;, £=4&. Their semiaxes have the lengths

R =a&, R=a{& -1, (M)
for the internal ellipsoid and

R® =a¢&,, RY =ay&l-1 )

for the external one. The parameter a of the coordinate system can be considered as a
characteristic size of the shell.

Our task is to obtain the electron wavefunctions in such shells, the electron energy
spectrum, the matrix elements of the optical transitions and finally, using these quantities,
to find the optical conductivity (an electric component) of such ellipsoid shell. We will
use the following expression (see, for example, [25, 26]) for optical conductivity
components for a small metal particle in general case

2 2
NN ilx 1S o LEN - SAEE, ~E,~ha). )
if

N

o, =

here the optical conductivity tensor & written in the diagonal form. The expression is
obtained for the case of a spatially uniform electrical field inside the particle.

In our case, it is convenient to introduce two components of the absorbed energy and,
consequently, two components of the optical conductivity. If we direct x; axis along the
rotation axis of the shell ellipsoid, absorbed energy components that correspond to x; and
x, axes are equal because of the system symmetry. Also, because of the system symmetry,
the matrix elements that correspond to x; and x, axes are equal, too. So, we can introduce
orthogonal (o,=0,=0) and parallel (o;=03) optical conductivity components.

In this work, we perform theoretical study of optical properties of ellipsoid
nanoshells. We obtain the wavefunctions, the wave number spectrum and the energy
spectrum for an electron in a nanoshell with the shape of a stretched rotation ellipsoid.
Using them, we obtain the matrix elements of the optical transitions (electric absorption)
in single-electron approximation for frequencies far from plasmon resonance and, finally,
the optical conductivity of above-mentioned shells. Note that optical conductivity of such
shell becomes an essentially tensor quantity, and its optical properties become anisotropic.

2. LOCAL FIELD IN AN ELLIPSOID SHELL

As we mentioned in the previous chapter, the expression (3) is obtained for the case
of spatially uniform local field inside the particle — in our case, inside the ellipsoid shell.
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So, in order to use this expression, we have to find an expression for this local field and to
show that it can be considered approximately uniform.

We consider an ellipsoid shell described in the previous chapter. (The rotation axis of
the ellipsoid coincides with the Oz axis in the corresponding Cartesian coordinates.) The
shell is placed in an external electric field & that can be described with a potential V).
(The field & can be considered uniform because the shell size is much smaller than an
incident light wavelength. Time-dependent oscillating factor cos(w?) doesn’t influence our
results and can be omitted.)

According to the superposition principle considering two orientations of &, — along

Oz axis, so
Vo =Vyy =—Sox=—80aw/i§2—lil—772icosgp, 4)

and along one of two axes Ox or Oy, say Ox, so

Vo=V, =—Eyz=—E,asn. (5)
is enough for a description of an arbitrary oriented field. Using reasons analogous to given
in [27] we can seek the potential in the form

V=V0+V0F(§), 56(52,4-00), (6)
where F(¢) is a certain admissible function of & After solving the Laplace equation in the

spheroidal coordinates for a potential given by (6) and using sewing conditions on the
shell boundary, we obtain the following expression for a potential inside the shell:

V=4V, +CVy-Df(E), &elé.s), (7
here the function f{¢)
_ __¢ 1 et
f€)=18)=mry 5 ®)

for an orthogonal (to the ellipsoid rotation axis) orientation of the electric vector, and

£@)=fE) =14t

e )

for a parallel orientation. The coefficient 4

& 1
. e )
2 & & 1
esle 1ot e g Hote) e 2t

b

(10)
and the product of the coefficients C and D
CD= ! "
2 & &
el -1 o))y Hemrie)- e %
(11)
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for both orientations of the incident light electric vector. So, an electric field inside the
shell for the orthogonal orientation can be written in the form
CD |1-7
2:20(A+CDfL(§))—Soe§ 21\ 2 _77772 cosQ, (12)

here e ¢ 1s a unit vector for the coordinate &, and for the parallel orientation

CDy

ae -1 -n?)

After performing a limiting process to a solid metal ellipsoidal particle and an
spherical metal shell the expressions we obtain (for the potential and the field,
correspondingly) transform into known expressions (from [27] and [3], correspondingly),
thus validating the results we obtained.

Analysis of the expressions (12) and (13) shows that the field inside a thin (&;-&,<<&5)
ellipsoid shell can be considered approximately uniform if the following relation fulfils:

ey ) (A (A ))1 «<1. (14)

This relation has similar form for the both orientations of the incident light electric
field, but we should note that the function f{&) that enters (14) is given by (9) for the
longitudinal field orientation and by (8) for the orthogonal orientation.

So, we can conclude that if the relation (14) fulfils, a field in an ellipsoidal nanoshell
can be considered uniform with enough precision. This allows us to use (3) for a
calculation of an optical conductivity of the shell.

£=¢g,(4+cDf(9)-ge. (13)

3. THE ELECTRON WAVEFUNCTIONS AND THE ENERGY SPECTRUM

To calculate the optical conductivity of the shell we consider, we need, first, to obtain
the wavefunctions and the energy spectrum for an electron in the shell, and second, use
them to find the matrix elements that enter into (3). This chapter is dedicated to the
wavefunctions and the energy spectrum calculations.

Let us consider the shell as an orthogonal potential well for an electron (by the
coordinate &). The potential energy V,(&) of an electron in such shell can be written

0 fe@é
VQ‘VQ@‘{VOQ, £e (66T =

where V. is the potential well depth. Here the dielectric inside and outside the shell is
considered similar (this simplification doesn’t influence our result as long as we can use
the infinite potential well model).

The eigenfunctions of an electron in such potential well can be written in the form

w(&7,0) = R(E)S() e"s(z’_’:@) (16)
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the functions R(&) and S(7) are the radial and the angular wavefunction, correspondingly.
After substituting a function of such type into the Schrédinger equation and variables
separation we obtain for R(£) and S(7) inside the shell (&e[&), £))

— —1)— [+| -4+ (k -1)- R=0, 17
—I =" )—|+| A+ (ka)"\1-n")- §=0 18
dﬂ(( ! )dUJ ( i) -7’ )
here k is the electron wave number, A is the constant of the variables separation. For an

mV,,

electron outside the shell, we must replace k? with k% + in these equations.

To solve the equations (17) and (18), we apply the theory of a spheroidal functions,
see, for instance, [28]. First, we note that for typical nanoshells the condition ka>>1
fulfils. (If we take, say, k=k=1,15-10"" m” — the Fermi wave number of gold and a=20
nm — the typical nanoshell size, we obtain for the product ka=230>>1.) This, according to
[28], allows us to expand the variables separation constant A in series:

1 1
A=A, =—(ka) +ka(2] —2m+1)—§((21—2m+l)2 +5 —8m2)+ o(k—} (19)
a
here / is an orbital quantum number. This representation allows us to solve (17) in the
quasiclassical approximation. After applying certain transformations that we omit, the
solution of (17) can be written in the form

R(f)N exp(i lj.pl(g)dg)
&’ _1p1(§)

(20)

with the function p;(&)

2

_ f_zk 2_21—2m+1k _m < ¢ ka. 71
e e e e

After taking the integral using the quasiclassical approximation, we can rewrite the
radial wavefunction in the form

R()- sin(kawlé2 -1 +a)

&Ye&* -1

; (22)

where « is a certain initial phase.

The procedure of finding the angular wavefunction S(77) is more complex. After
applying the results from [28] for the quasi-classical approximation for spheroidal
functions, the solution of (18) inside the shell can be written in the form

Stn)~ = 771 ) COS[ }pz (n)dn —%} : (23)

/()
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Here, in accordance with [28], we suppose that an electron in the shell is placed in the
potential well [-77, 775]; the function p,(77) can be written in the form

pitn)= {1 |20 ) ot ) P

1_772 1_772 8(1_77 (1_772)23
(24)
and 77, is the additional, lesser than 1 root of the equation p,(77)=0:
n = LA 2 +4m’* (ka)’ a5)
’ 2(ka)’ '

Taking into consideration the fact that outside the potential well the electron
wavefunction decays exponentially and the fact that we can consider 77,<<1 (this relation,
according to [28], implies from the relation ka>>1), we can, after certain transformations,
rewrite S(77) in the form

S(i7) ~ 4—1_17 cos[[q + %j{ﬁﬂl —77% +arcsingy +§j —%j , (26)

where 77=l,q =[-m.
o
So, we can write a quasi-classical electron wavefunction in the shell as follows:

2
4 1
w(&,n,9) = ————=cos A l—(lJ +arcsinl+£ (q+—}—£ X
e —n’ qr 7, n, 2 2) 4

y sin(kaﬂzjz -1+ a)exp(z’m(p)
Jeleor N

where 4 is a normalization constant. Outside the shell (77¢[-7,7y]) we can consider y=0.
The normalization integral for the constant 4 is

Azzjfd(pj%désinz(ka\/ﬁjta) Ist n,dn y
0 272'51 5“52 -1 71+5770\/1—772 (28)

b

xcosz[[ﬁ 1-7° +arcsinﬁ+§j[q+%j—%ja3(§z —772775)=1

where ¢? (§ -7t )dfd nde = a3(§2 - nz)dfd nde is a small volume element in the

spheroidal coordinates (see the Appendix). After rather complex transformations, the
following form of the constant A implies from (28):

27)
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B 1
! _2\/ w15 1) !

So, finally we can rewrite a quasi-classical electron wavefunction in the shell as
follows:

V(E. @) = zexp(im(p)\/ 2 sin(ka\/§2—1+a)x
7 N \dfg-1-g 1) ofefe

2
x;cos A 1—(1J +arcsinL + 2 [q+lj—£
Ane —n’ o o M 2 2) 4

Now we have to find the wave number spectrum. First, we note that the interval
[£, &] should contain an integer number of the half-waves for the function R(&):

ka &) —1—ka\JE) —1=m . (31)

So, we can write the wavenumber spectrum

ka=—— m 2 32)
\/ é 2 1- \/ 681 -1
and the corresponding electron energy spectrum
h 2 2.2
T°n (33)

5 om aezr-1-Je2 -1

Note that the electron spectrum (32), (33) for the considered shell is quasi-one-
dimensional, similar to the electron spectrum in an infinite rectangular potential well. This
fact takes place because the shell we consider is thin.

In order to obtain the initial phase ¢, we use the fact that in our model the electron
wavefunction is equal to zero on the extremities of the interval [£;,&]. This condition can

be written in the form
{ kaJE —1+a =0 ”

kaEX -1+a=m

It is not necessary to solve this system because further we will only need « in the
combinations that enter (34).

So, we obtained the wavefunctions and the wavenumber spectrum for an electron in
an ellipsoid metal shell. As we can see, the expression we obtained for the radial
wavefunction R(&) tends to the known expression for a radial wavefunction of an electron
in a spherical nanoshell [21] when our shell tends to spherical (&—o0). This validates the
results we obtained.
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4. THE MATRIX ELEMENTS OF THE OPTICAL TRANSITIONS. THE
NANOSHELL OPTICAL CONDUCTIVITY IN THE FROM OF A SUM OVER
ELECTRON STATES

Now, having the electron wavefunctions and the energy spectrum, we can calculate
the matrix elements of the optical transitions that enter into (3). From the system
symmetry the equality <i|x,|f>=<i|x;|f> implies, so we have to calculate only <i|x;|f>
and, for instance, <i|x,|f>. For the matrix element <i|x,|f> we have

. 2a Ot T O i Sin(k'a\/.fz 1+
<i|x |f>z\/%_\/ﬁ 12 : !:sm(kaw/.fz —1+a) 5@ )x

o o 7y

—min(779,77,"

min(r7,.7,") 2
xEHE —1-d§-7—2z _[ co (Cl"‘%j A I—EEJ +arcsin£+7—2r —%]x (35)
)

. T\ T d
+arcs1ni' +— |—— 7

n' 2] 4l - o) -7

here we used the expression (27) for an electron wavefunction, the relation |7|<7,<<l
(see the previous chapter) and the expression (A5) from the Appendix for a small volume
element in the spheroidal coordinates. From here on non-primed quantities relate to the
electron initial state, primed ones — to the final state.

Now we note that in this sum we can leave the addends with g=¢’ only. Addends
with g#q~ give the functions that quickly oscillate by 7, so they will be negligibly small
after the integration. Also, in typical cases the photon energy A (for instance, 0,1 eV for
a CO; laser) is much less than the Fermi energy of the shell metal E (3-5 eV for typical

metals). So, we can introduce the quantity 5@ and consider that it satisfies the
F

relation v<<1. Using the fact that an electron distribution function for the shell metal is

close to the Heavyside function, we, after rather complex transformations, can rewrite (35)

in the form

hZ
mfa)za(\/f; -1- \/512 -1

The matrix element <ilx;[f> requires more complex transformations. The starting
expression

<ilx | f>=

)(1 - (_ l)nw m,m'51,1' ~kk'. (36)
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2a

<ilw| f = o, sinfka/€ 1+ asinlk a2 1+ o)
\/522_1_\/9&12_1 g é\/éz_l

2
Ccos [q+1j = 1—(”} +arcsin L+ 7 |- %
2 min(']o»ﬂo') 2 770 770 770 2 4
X — I X

T _min{ne.my') 4{/(773 - 772 X(UO ')2 N 772)

2
X cos ((I""lj i, 1—(4} +arcsinl'+£J _z ndn
2)| m o n,' 2)| 4

G37)

after applying the analogous considerations plus the method of a stationary phase (see, for
example, [29]) for the integration by & and the numerical integration, can be transformed
into the following:

<ilx, | f>= K2, (38)
T

2h25m,m'5l,l' _1)n+n' \/6822 -1 _ \/6812 -1
meza)za(\/é; -1 —\/é’lz —1) 682 681

To verify the results we obtained, let’s compare them with the analogous expressions
for a spherical shell. For the latter, the radial wavefunction in the spheroidal coordinates is

written
1

jz lsin[kr—(l+l)%+aj, (39)

r

R(r) = (

where r;, are the internal and external shell radii, correspondingly. Then, after
corresponding transformations the radial part of the matrix element (all three of them are
equal because of the system symmetry) can be written

1 ~ 1 1
. — _ln+n _1 — ],
<l|x|f>r (( ) {ki sz (40)

r,—n

>~ h
where k, = k£ k'. For an ellipsoid nanoshell, an intermediate expression for the radial part

of the matrix element, for example, by x; can be written

<i|x1|f>§=\/§2_lf\/§2_1((_1)n+n'_l(ci2—ci2} (41)

where ¢, = (k'ik)a. This expression, really, tends to (39) if an ellipsoid shell is deformed

into a spherical; similarly for the matrix element by x;. So, such passage to the limit
substantiates the results we obtained.
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5. CALCULATIONS OF THE OPTICAL CONDUCTIVITY

Using matrix elements of the optical transitions we obtained in the previous chapter,
we can obtain the optical conductivity of an ellipsoid metal shell. After substituting these
matrix elements into (3) and certain simplifications we can write down

o, =" £ J Sl R R £.E )£ EWE, ~ E, ~ho)
if

4 m4a)4a2( E-1-4/& -1

(42)
wo 32h* 2/— 2m+l
2
s (eI Rl

_Gite (1) Gl ) S(E, -E, -ho)

2878, 615>

(kY £ (E)A= f.(E, )%

o=

(43)
First, we shall perform the summation over /, m, [’ and m’. For the orthogonal
conductivity component the summation can be easily performed, we obtain

72220) 8h4 n+n' |1 4 (1.4\2 _ _ —
T ;(1—(—1) Ve (6 1. (B, )1~ £.(E, )S(E, — E, —heo)44)

The sum that enters into (43) requires more complex transformations. After using the fact
that the discrete function (1—(—1)”’"') can be replaced with its average equal to 1 (in
analogous way to the calculation accomplished in [30]), we can write down

o 324 (1_55 +§§J£\/§§ —1-y& -1 y
v, m'mlo* 28 ™ 45)

xS (= Oy R ) 1.8, 1B (E, - B, ~ o)

The optical conductivity can be easily calculated if we neglect the discreteness of an
electron energy levels and replace the sum that enters into (44) and (45) with the
corresponding integral. This corresponds to the classical approximation — quantum effects
related to the electron spectrum discreteness are not considered. We shall consider them
later by calculating the correction to this classical expression.

So, after performing integration in analogous way to [25], we obtain the following
classical expressions:

o0 = 32¢? (Jé . _1)2 g(3v

o=

3hV g (46)
B 32¢* : gv 64 .fl +§2 B ’
*h Ya (\/52 1-y& 1)Z v 3z’ (1 282 J(\/fz e 1)
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where

3/2 2p+ +
o) j P [F v ((p(p+ V)" vCp v)Jp(p V) ln( [ W)J
After applying expressions for the shell volume (46) can be rewritten

Lo _ 24 (\/55—1—\/55—1)2 g(v)

bortha (& -e)E +ag e -1

0 24¢* (\/‘522 _1_\/‘512 _1)2 g(V) 64 ‘51 +‘§2 _ _
o _72'47161 (52_51)(5224_5251_’_512_1) V3342 1- 251 52 (\/‘fz -1 \/‘fl 1)

The expressions obtained so far are classical (denoted by the index 0 in O'E , O'HO) —

(47)

—V

(48)

the quantum effects related with the electron energy quantization in the shell are not
considered. As we mentioned before, such effects can become noticeable even in the case
of small solid metal particles. And for thin metal shells these effects are much more
essential.

Using of the Poisson formula allows us to obtain analytical expressions for the
optical conductivity that take into consideration these quantum effects. The Poisson
formula applies to an arbitrary function of a natural argument y,(n):

iyl (n) = Tdn(yl (n)+ 22 v, (n) cos(27zsn)j . (49)

Before applying (49) to (44) and (45) we should note that d-function of a discrete
argument doesn’t have mathematical sense. To give it necessary physical sense, we should
use the fact that 5-function is a limit of a flock of classical functions. During a passage to
the limit area under the graph of such classical function remains equal to 1 while the width
of the peak (of graph figure, in general) tends to zero and height to infinity.

It is convenient for us in such situation to use the concept of the ‘spread’ 5-function:

0, x<—
5(x)= L AR AE (50)
AE 2 2
0, x>—

when the case AE—0 corresponds to the ‘classical’ 6-function.
Then, we notice that we can replace E,, = E, +h® in (44) and (45). The

possibility of such replacement implies from the look of the d-function that expresses the
energy conservation law in (44) and (45). After using such replacement, we can introduce
the concept of the energy states density — the following function:
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G(£)=3 (-1 (&, - E,). (51)

n'=1

So, the expressions (44) and (45) contain G(E + ha)) After introducing the 8-function in

the above-described way, the energy states density

G'(E)= i(l ~ -1y )" (E, - E,) (52)

n'=1

becomes a classical function and the Poisson formula can be applied to it. (During the
process we replace the discrete function (1—(—1)”‘”') with its average equal to 1 in

analogous way to the calculation accomplished in [30].) Using the electron energy
spectrum (33), we obtain

a(\/gj —1-E —1)2m, )
AE

G (EL) =
(53)

where

AE . (54)

As it is easily seen, the first addend in (53) gives the known expression for the one-
dimensional energy states density. The addends of the series in (53) consider the
oscillations of the states density caused by a spectrum quantization. After taking the limit
AE—0 we obtain relevant result for the function G(E).

Now we can apply this summation method to (44) and (45). We apply it twice
(summation over n and n’). Note that in this double sum we only keep the addends with
s=s’; other addends are quickly oscillating and can be considered negligibly small after
the integration. Taking into consideration the proximity of the electron energy to the
Fermi energy and using the inequality E>>6 (here Er is the Fermi energy of the shell
metal and the quantity & is the temperature in energy units), we obtain after complex
transformations
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here the function

o(E, )=E2(E, + ha));i Shs(i;% ('1(32)))’ (57)

and ¢ _is the following function of energy:

@(E)Esza(‘/é22 _;_‘/512 _1)\/2_me(\/E+ha)—«/f). (58)

Numerical calculations show that the first five terms in the sum over s secure a sufficient
accuracy for the quantum correction for typical shells and light frequencies.
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As we can see, expressions for both conductivity components consist of two parts —
classical conductivity, given by (48), and quantum corrections that consider quantum
effects related with electronic spectrum quantization. Also, from the look of the
expressions for electronic spectrum (32), (33) we can see that electronic spectrum for our
shell becomes quasi-one-dimensional, similar to that of a one-dimensional potential well
for electron. Really, if a shell is thin enough, a system becomes quasi-one-dimensional, so
dependence of the optical conductivity components from v should not depend from the
shell shape. A shape of the shell is considered by a factor before this dependence. (See, for
example, the expressions for a spherical shell [21].)

Ac, Ao,

Graphical representation of the relative quantum correction =K as a

0 0

o, o
function of the ratio v for an ellipsoid nanoshell with parameters £=5.53 eV (the Fermi
energy of Au), temperature =300 K, longitudinal shell thickness

a \/ E—1- \/ £l - l)=100 nm (for a thick shell oscillations behaviour becomes clear) is
given on Fig. 1.
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Fig. 1. Relative oscillatory quantum correction x for an ellipsoid shell with E~=5,53
eV (the Fermi energy of Au), temperature @=300 K, longitudinal shell thickness 100 nm
as a function of the ratio v of the photon energy to the Fermi energy of the shell metal.

We can see from the graph (and the numerical evaluation shows it, too) that these

quantum corrections are essential and cannot be neglected, as in was predicted in
introduction. For a thinner shell the contribution of these corrections is even more
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essential. For example, for a(\/ 522 -1- \/ flz - l)=10 nm (typical shell thickness)

amplitude of the oscillations of the relation x exceeds 200 in the vicinity of the point
v=0.2.

So, the graph shows that considering of an electron energy quantization leads to the
appearance of an oscillating dependence of the optical conductivity components from the
incident light frequency. Analysis shows that the oscillations frequency depends from the
shell thickness. As we mentioned in introduction, such type of dependence was noticeable
even for relatively thick nanowires [14]. So, when investigating one-electron light
absorption by nanoshells for the energies much less than the Fermi energy of the shell
metal one should consider the effects caused by the electron energy spectrum
quantization.

Note that unlike the case of a spherical shell [21], optical conductivity of an ellipsoid
shell is essentially a tensor quantity with two (for the considered case of a rotation
ellipsoid) unequal, in general, components.

Note also that when # formally tends to O (the classical case), the optical
conductivity oscillations frequency (determined from (55) or (56)) tends to the frequency
of classical oscillations. These are the oscillations with an electron passage frequency
from one shell wall to other [31]. This fact also validates the results we obtained.

RESULTS AND REMARKS

Thus, we obtained the quasi-classical wavefunctions and calculated the wave number
spectrum and the energy spectrum for an electron in a nanoshell with the shape of a
stretched rotation ellipsoid. The metal shell was considered as a thin shell. We showed
that in this case the system is quasi-one-dimensional (similar to the one-dimensional
potential well for electron). As a result, the distance between the energy levels increases,
and the quantum effects related to the discreteness of the electron energy spectrum
become essential.

Then, we found the matrix elements of the corresponding optical transitions and used
them to represent the optical conductivity as the sum over electron states. This sum was
used to derive the analytical expression for the optical conductivity of the considered
shells.

Firstly, we found the analytical expressions for the classical (with electron spectrum
quantization ignored) conductivity (the electric absorption) of these particles. From this
classical expression we can already see that for an ellipsoid nanoshell the optical
conductivity becomes an essentially tensor quantity (it cannot be reduced to one scalar).

Secondly, we considered the quantization effect and found the correction to these
classical expressions. It was shown that this quantum correction makes an essential
contribution into the total shell absorption. It was also shown that this correction depends
on the incident light frequency in an oscillatory way. So, this oscillating effect should be
taken into consideration when investigating light absorption of thin nanoshells for the
energies much less than the Fermi energy of the shell metal as this quantum addend
exceeds classical addend considerably. A dependence of the analogous nature was
observed in the experiments with solid metal nanowires [14] and in the quantum theories
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of thin metal films (see, e.g., [15]). Such an oscillatory dependence can be explained as
follows. The light absorption is stronger when the energy 7% is close to the difference
between one of the electron energy levels and the Fermi energy. A smooth oscillating
curve is observed instead of discrete peaks due to the thermal smearing of the electron
distribution function by energy.

Note that a tensor nature of the optical conductivity and, consequently, the
dependence of the conductivity from an incident light polarization (implies from the fact
that the field that enters into our expressions is a local field) are essentially new properties
of an ellipsoid nanoshell comparing to a spherical shell. Note also that both expressions
obtained for the optical conductivity components consist of two factors — a factor that
depends from the light frequency and a factor that considers the particle shape. Therefore,
for a thin shell the problem becomes quasi-one-dimensional (an electron in a one-
dimensional potential well) so the dependence of the shell absorption from the light
frequency is not influenced by the particle shape. We can guess that an analogous effect
should take place for a thin enough nanoshell of an arbitrary smooth shape.

APPENDIX. SHPEROIDAL COORDINATES

The spheroidal coordinates (&,77,¢) are linked to the rectangular coordinates through

the following relations:
x= aw/ifz -1 il -’ icoscp

y=a1/i(§2—lil—ﬂz isin(p, (Al)
z=agn
here
é € [1,—{-00), ne [_151]9 ¢Pe [05272-) s (Az)
a is a constant parameter.
The coordinate ¢ is equivalent to the polar angle in the spherical coordinates; the
equation &=const describes a rotation ellipsoid with semiaxes R/ =aé, R, = a\E7 -1

(where R) is a semiaxis directed along a rotation axis of the ellipsoid), so the parameter a
satisfies the relation

a’ =R} -R}. (A3)

It is easily seen that
2

Ui

22:a2772+(x2+y2) - (A4)
so the equation 77=const describes a hyperboloid. We choose the upper hyperbola when
17>0 and the lower hyperbola when 77<0. Also, a differential of a volume for the spheroidal

coordinates

dv = a*(&* - Jd&dnde (AS)

will be used in our calculations, too.
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Kyiaum B.B. OaHO3/IeKTPOHHBbIE ONTHYECKHEe CBOWHCTBA  JLIHICOHAANBHBIX  MeTALIHYeCKHX
HaHooOos0uek / Kyanm B.B., Tomuyk IILM. // Vuensle 3amumcku TaBpHYecKOro HaIMOHATIBHOTO
yauBepcutera nmenu B.W. Bepuanckoro. Cepust: @usuko-matemarnaeckue Hayku. — 2010 — T.23(62), Ne3. —
C. 75-93.

MsbI uccneayeM ONTHYSCKHE CBOHCTBA HAHOOOOTOUEK (MaJIBIX KOMITO3UTHBIX KJIACTEPOB, COCTOSIIHX U3
JIDJIEKTPUUECKOTO  SiIpa M METAUIMYECKOM OOOJIOUKH; BKJIAJ METANIMYECKOH OOONOYKH  SIBISETCS
JIOMMHHPYIOIIMM B ONTHYECKHX CBOICTBAaX BCETO KiIacTepa) B OOJIACTH HacTOT, JAJEKOH OT IUIa3MOHHOTO
pe3onanca. Mpl mccieayeM HaHOOOONOUKH B (OpME BBITSHYTOrO JJUIMIICOMAA BpamieHus. [l Takux
000JIOYEYHBIX YaCTUIl OBUIM HaWAEHBI BOJHOBAsT (DYHKIMS HJICKTPOHA, CIIEKTP HEPTHH M BOJHOBBIX UHCEI
IEKTPOHA, @ TAKKe MATPUYHBIE JIEMEHTHI COOTBETCTBYIOIIMX ONTHYECKHX IepexonoB. C HCIoIbp30BaHUEM
9TUX BENUYMH ObUIM HAMIICHBI KJIaCCHYecKas ONTHYECKas MPOBOAUMOCTH (0€3 ydeTa KBAaHTOBBIX 3(QEKTOB)
TakuX OOOJOYEK M KBAHTOBAas ONTHYECKAs IPOBOJUMOCTH (HOOABKM K KIACCHUECKOH IPOBOAMUMOCTH,
KBAaHTOBBIMU 3 (EeKTaMH1, TAKIMH KaK JICKPETHOCTh 3JIEKTPOHHOTO CIEKTPA). Y CTAHOBJICH OCIMJUIHPYIOIINI
BHJI 3aBHCHMOCTH 3THX CJIaracMbIX OT YaCTOTHI CBETA, AJAIONIET0 Ha 000I0UKY.

Knrouegwie cnosa: HaHOOOOIOUKH, ONTHIECKAS IIPOBOANMOCTD, MaJIbIe KIIACTEPHI, KBAHTOBAHHE CIIEKTPA.

Kyaim B.B. OpnHoe/leKTPpOHHI ONTHYHI BJIACTHBOCTI eJiNCOiTaJbHUX MeTajJleBHX HAHO000JOHOK /
Kyaim B.B.,, Tomuyk IILM. // Bueni 3ammcku TaBpilicbkoro HaIiOHAJBHOTO  YHIBEPCUTETY
im. B.I. Bepraacekoro. Cepist: @izuxo-marematidni Haykd. — 2010 — T.23(62), Ne3. — C. 75-93.

Mu mocnimpKyeMO ONTHYHI BIACTHBOCTI HAHOOOOJIOHOK (MalyX KOMITO3UTHHUX KJIACTEpiB, IO CKIANAIOTHCS 3
JIENeKTPUIHOTO SApa Ta METAIeBOI OOONOHKM; BHECOK METajeBOi OOOJIOHKH € JOMIHYIOWHM Y ONTHYHHX
BIIACTHBOCTSAX BCHOrO KJIaCTepa) y 00IacTi 4acToT, JajeKil BiJ INIa3MOHHOIO Pe30HAHCY. MU TOCIimKyeMO
HAHOOOOJIOHKH y ()OpMi BUTSTHYTOTO €JIICcoixy ooepTaHHs. [y Takux 00O0JIOHKOBUX YacTOK Oyny 3HaimeHi
XBWJIbOBA (DYHKIIS €IEKTPOHA, CIIEKTP €HEpPrii 1 XBIIBOBUX UHCEN EJICKTPOHA, a TAKOXK MATPHUHI €IEMEHTH
BIIMOBITHAX ONTHYHUX MEPEXOIiB. 3 BUKOPUCTAHHSAM [WX BEIWYMH OYTU 3HAWICHI KIACHYHA ONTHYHA
MPOBIAHICTE (0e3 ypaxyBaHHS KBAaHTOBHX €(EKTiB) TaKMX OOOJOHOK Ta KBAHTOBA ONTHYHA MHPOBIIHICTH
(mobaBKM 1O KJIACHYHOI IPOBIJHOCTI, KBAHTOBHUMHU €(EKTaMH, TAKUMU SK JUCKPETHICTH EIEKTPOHHOTO
CHeKTpy). BcTaHOBIIEHO OCIMITIOIOYHN BUTIIAN 3aI€KHOCTI IUX JOAAHKIB BiJl YaCTOTH CBIiTIIA, IO MAajJae Ha
00OJIOHKY.

Kniouosi cnosa: HaHOOOOIIOHKY, ONTHYHA IIPOBIJHICT, MaJl KJIACTEPH, KBAHTYBAHHS CIICKTPY.
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