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We investigate optical properties of nanoshells (small composite clusters composed of a dielectric core and a 
metal shell; contribution of the shell dominates in the optical properties of the whole cluster) in the frequency 
range far from plasmon resonance. In particular, nanoshells with the shape of a stretched rotation ellipsoid are 
considered. For such shell-type particle the electron wavefunction, the electron energy, the wavenumber 
spectrum, and the matrix elements of corresponding optical transitions were found. Using these quantities, the 
classical optical conductivity of such shells (the quantum effects are not considered) and the quantum optical 
conductivity (relevant addendums for the classical conductivity that are caused by the quantum effects like the 
electron spectrum discreteness) were found. Oscillating nature of the dependence of these addendums on the 
incident light frequency is established. 
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INTRODUCTION 
 
Nanotechnologies that use metal nanoparticles become popular recently. As a further 

development of these technologies, new technologies that use so-called nanoshells [1-4] 
have become possible after this type of nanoparticles have been obtained. A nanoshell is a 
composite nanoparticle that consists of a dielectric core and a thin metal shell. 

Technical applications of metal nanoparticles in common are mostly based on their 
unique optical properties. For instance, these particles can effectively absorb light on a 
given wavelength. Composite nanoparticles of this type represent a special practical 
interest because they allow widening of the operating range of work wavelengths in 
comparison to traditional solid metal nanoparticles. Also, nanoshells turn out to be rather 
promising for a number of technological applications (especially in medicine and biology, 
see, for example, [4]) because their optical properties can be regulated more flexibly than 
in traditional systems. This flexibility appears because the internal and the external radii of 
the metal shell (that dominates in the optical response of the whole particle) can be 
changed independently. 

It should be mentioned that such shell-type particles have become of particular 
interest quite recently. They have been studied intensively both theoretically [5-11] (using 
classical and quantum approach) and experimentally [3,5,12,13]. However, their optical 
properties have been studied near plasmon resonance for the most part. The articles that 
investigate contribution of individual transitions into the light absorption (the infrared 
spectrum mostly; experimental studies of thin metal films and small metal particles in the 
infrared spectrum are represented, for example, by [14]) usually consider one of two 



KULISH V.V., TOMCHUK P.M. 

 76 

opposite limiting cases. The first case corresponds to the situation when distances between 
electron quantum levels are small as compared to the light quantum energy, and the sum 
over electron states is replaced with an integral. The second limiting case corresponds to 
the situation when distances between energy levels are of the same order with the light 
quantum energy, and only two or three levels are to be taken into account. However, a 
typical shell has much more of actual electron energy levels. On the other hand, in this 
study we demonstrate that the quantum effects related to the electron energy quantization 
within the shells cannot be neglected. The reason is that the energy states for a thin shell 
are quasi-one-dimensional, so the distance between them becomes greater as the shell 
becomes thinner. Related theoretical studies for thin metal films [15] show that such 
effects make an essential contribution to the film optical properties in the infrared 
spectrum that we consider. 

Note that an oscillating dependence of electrical and optical properties of a metal 
nanowire on its thickness, similar to the dependence obtained in the current article, was 
observed experimentally in [16]. Such a dependence for a solid metal nanowire indicates 
that similar quantum effects in shell-type systems are much stronger. Theoretical studies 
of thin metal films [15] also show this quantum size effect. 

Furthermore, studies on the subject mainly focused on the magnetic absorption (see, 
e.g., [17-19]), which represents only one component of the total light absorption (this 
component is related to the magnetic vector of electromagnetic wave). However, in small 
metal particles the prevalence of the magnetic absorption or the electric absorption is 
determined by the particle size, particle shape, and the electromagnetic wave frequency 
[20]. 

It is important to note that optical properties of small metal particles depend strongly 
on their shape (see, for example, [20]). This makes necessary separate studies of 
nanoshells of different shapes, too. Most theoretical studies focused on the cases of 
spherical and cylindrical shell (see, e.g., [21]). This makes an investigation of the single-
electron optical properties of an ellipsoid nanoshell with consideration of above-
mentioned quantum effects especially important. 

In this work, we perform a theoretical study of the optical properties of ellipsoid 
nanoshells. We obtain the wavefunctions, the wave number spectrum and the energy 
spectrum for an electron in a nanoshell with the shape of a stretched rotation ellipsoid. 
Using them, we obtain the matrix elements of the optical transitions (electric absorption) 
in single-electron approximation for frequencies far from plasmon resonance and, finally, 
the optical conductivity of above-mentioned shells. 

 
1. SETTING OF THE PROBLEM. GENERAL EXPRESSION FOR THE OPTICAL 

CONDUCTIVITY OF A SMALL METAL PARTICLE 
 
Let us consider a nanoshell with the shape of a rotation ellipsoid and an 

electromagnetic wave that falls on it. We consider single-electron light absorption in such 
particle. As we mentioned before, the metal shell dominates in the optical response of the 
whole composite nanoshell. So, we can model our composite nanoshell with just an 
ellipsoid metal shell. 
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Size of the particle is considered small comparing to the incident light wavelength, so 
the field of the electromagnetic wave can be considered uniform on the distances of the 
order of the particle size. Also, the nanoshell is considered thin enough so the local field 
inside the shell is approximately uniform (see the chapter “Local field in an ellipsoid 
nanoshell”). (Local fields in spherical nanoshells were studied theoretically, for instance, 
in [3] with references on [22-24].) 

Considering the symmetry of our system, it is convenient to use the spheroidal 
coordinates (ξ,η,ϕ) with the constant parameter a (see the Appendix). Let’s consider a 
shell limited by two rotation ellipsoids. The ellipsoids are described by the equations 
ξ=ξ1, ξ=ξ2. Their semiaxes have the lengths 

1, 2
1
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for the external one. The parameter a of the coordinate system can be considered as a 
characteristic size of the shell. 

Our task is to obtain the electron wavefunctions in such shells, the electron energy 
spectrum, the matrix elements of the optical transitions and finally, using these quantities, 
to find the optical conductivity (an electric component) of such ellipsoid shell. We will 
use the following expression (see, for example, [25, 26]) for optical conductivity 
components for a small metal particle in general case 
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here the optical conductivity tensor σ€  written in the diagonal form. The expression is 
obtained for the case of a spatially uniform electrical field inside the particle. 

In our case, it is convenient to introduce two components of the absorbed energy and, 
consequently, two components of the optical conductivity. If we direct x3 axis along the 
rotation axis of the shell ellipsoid, absorbed energy components that correspond to x1 and 
x2 axes are equal because of the system symmetry. Also, because of the system symmetry, 
the matrix elements that correspond to x1 and x2 axes are equal, too. So, we can introduce 
orthogonal (σ⊥=σ1=σ2) and parallel (σ||=σ3) optical conductivity components. 

In this work, we perform theoretical study of optical properties of ellipsoid 
nanoshells. We obtain the wavefunctions, the wave number spectrum and the energy 
spectrum for an electron in a nanoshell with the shape of a stretched rotation ellipsoid. 
Using them, we obtain the matrix elements of the optical transitions (electric absorption) 
in single-electron approximation for frequencies far from plasmon resonance and, finally, 
the optical conductivity of above-mentioned shells. Note that optical conductivity of such 
shell becomes an essentially tensor quantity, and its optical properties become anisotropic. 

 
2. LOCAL FIELD IN AN ELLIPSOID SHELL 
 
As we mentioned in the previous chapter, the expression (3) is obtained for the case 

of spatially uniform local field inside the particle – in our case, inside the ellipsoid shell. 
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So, in order to use this expression, we have to find an expression for this local field and to 
show that it can be considered approximately uniform. 

We consider an ellipsoid shell described in the previous chapter. (The rotation axis of 
the ellipsoid coincides with the Oz axis in the corresponding Cartesian coordinates.) The 
shell is placed in an external electric field EEEE0 that can be described with a potential V0. 
(The field EEEE0 can be considered uniform because the shell size is much smaller than an 
incident light wavelength. Time-dependent oscillating factor cos(ωt) doesn’t influence our 
results and can be omitted.) 

According to the superposition principle considering two orientations of EEEE0 – along 
Oz axis, so 

      ( )( ) ϕηξ cos11 22
0000 −−−=−== axVV X EE ,                         (4) 

and along one of two axes Ox or Oy, say Ox, so 
ξηazVV Z 0000 EE −=−== .                                         (5) 

is enough for a description of an arbitrary oriented field. Using reasons analogous to given 
in [27] we can seek the potential in the form 

( ) ( )+∞∈+= ,, 200 ξξξFVVV ,                                  (6) 

where F(ξ) is a certain admissible function of ξ. After solving the Laplace equation in the 
spheroidal coordinates for a potential given by (6) and using sewing conditions on the 
shell boundary, we obtain the following expression for a potential inside the shell: 
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here the function f(ξ) 
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for an orthogonal (to the ellipsoid rotation axis) orientation of the electric vector, and 
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for a parallel orientation. The coefficient A 
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and the product of the coefficients C and D 
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for both orientations of the incident light electric vector. So, an electric field inside the 
shell for the orthogonal orientation can be written in the form 
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here ξe
�

 is a unit vector for the coordinate ξ, and for the parallel orientation 
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After performing a limiting process to a solid metal ellipsoidal particle and an 
spherical metal shell the expressions we obtain (for the potential and the field, 
correspondingly) transform into known expressions (from [27] and [3], correspondingly), 
thus validating the results we obtained. 

Analysis of the expressions (12) and (13) shows that the field inside a thin (ξ2-ξ1<<ξ2) 
ellipsoid shell can be considered approximately uniform if the following relation fulfils: 
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This relation has similar form for the both orientations of the incident light electric 
field, but we should note that the function f(ξ) that enters (14) is given by (9) for the 
longitudinal field orientation and by (8) for the orthogonal orientation. 

So, we can conclude that if the relation (14) fulfils, a field in an ellipsoidal nanoshell 
can be considered uniform with enough precision. This allows us to use (3) for a 
calculation of an optical conductivity of the shell. 

 
3. THE ELECTRON WAVEFUNCTIONS AND THE ENERGY SPECTRUM 
 
To calculate the optical conductivity of the shell we consider, we need, first, to obtain 

the wavefunctions and the energy spectrum for an electron in the shell, and second, use 
them to find the matrix elements that enter into (3). This chapter is dedicated to the 
wavefunctions and the energy spectrum calculations. 

Let us consider the shell as an orthogonal potential well for an electron (by the 
coordinate ξ). The potential energy Ve(ξ) of an electron in such shell can be written 
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where V0e is the potential well depth. Here the dielectric inside and outside the shell is 
considered similar (this simplification doesn’t influence our result as long as we can use 
the infinite potential well model). 

The eigenfunctions of an electron in such potential well can be written in the form 
( )
π

ηξηξψ
2

exp
)()(),,(

ϕ
=ϕ

im
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the functions R(ξ) and S(η) are the radial and the angular wavefunction, correspondingly. 
After substituting a function of such type into the Schrödinger equation and variables 
separation we obtain for R(ξ) and S(η) inside the shell (ξ∈[ξ1,ξ2)) 
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here k is the electron wave number, λ is the constant of the variables separation. For an 

electron outside the shell, we must replace 2k  with 
2

02 2

ℏ

emV
k +   in these equations. 

To solve the equations (17) and (18), we apply the theory of a spheroidal functions, 
see, for instance, [28]. First, we note that for typical nanoshells the condition ka>>1 
fulfils. (If we take, say, k=kF=1,15⋅1010 m-1 – the Fermi wave number of gold and a=20 
nm – the typical nanoshell size, we obtain for the product ka=230>>1.) This, according to 
[28], allows us to expand the variables separation constant λ in series: 
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here l is an orbital quantum number. This representation allows us to solve (17) in the 
quasiclassical approximation. After applying certain transformations that we omit, the 
solution of (17) can be written in the form 
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with the function p1(ξ) 
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After taking the integral using the quasiclassical approximation, we can rewrite the 
radial wavefunction in the form 
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where α is a certain initial phase. 
The procedure of finding the angular wavefunction S(η) is more complex. After 

applying the results from [28] for the quasi-classical approximation for spheroidal 
functions, the solution of (18) inside the shell can be written in the form 

( )
( ) ( )

( )













−

−
∫
− 4

cos
1

1
~

0

2

2
2

π
ηη

ηη
η

η

η

dp
p

S .                       (23) 



ONE-ELECTRON OPTICAL PROPERTIES OF ELLIPSOID METAL NANOSHELLS 

 81 

Here, in accordance with [28], we suppose that an electron in the shell is placed in the 
potential well [-η0,η0]; the function p2(η) can be written in the form 
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and η0 is the additional, lesser than 1 root of the equation p2(η)=0: 
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Taking into consideration the fact that outside the potential well the electron 
wavefunction decays exponentially and the fact that we can consider η0<<1 (this relation, 
according to [28], implies from the relation ka>>1), we can, after certain transformations, 
rewrite S(η) in the form 
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where 
0

~
η
η

η = , q = l- m. 

So, we can write a quasi-classical electron wavefunction in the shell as follows: 
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where A is a normalization constant. Outside the shell (η∉[-η0,η0]) we can consider ψ=0. 
The normalization integral for the constant A is 
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where ( ) ( ) ϕ−=ϕ− dddaddda ηξηξηξηηξ 2232
0

223 ~  is a small volume element in the 

spheroidal coordinates (see the Appendix). After rather complex transformations, the 
following form of the constant A implies from (28): 
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So, finally we can rewrite a quasi-classical electron wavefunction in the shell as 
follows:  
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Now we have to find the wave number spectrum. First, we note that the interval 
[ξ1,ξ2] should contain an integer number of the half-waves for the function R(ξ): 
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So, we can write the wavenumber spectrum 
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and the corresponding electron energy spectrum 
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Note that the electron spectrum (32), (33) for the considered shell is quasi-one-
dimensional, similar to the electron spectrum in an infinite rectangular potential well. This 
fact takes place because the shell we consider is thin. 

In order to obtain the initial phase α, we use the fact that in our model the electron 
wavefunction is equal to zero on the extremities of the interval [ξ1,ξ2]. This condition can 
be written in the form 
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It is not necessary to solve this system because further we will only need α in the 
combinations that enter (34). 

So, we obtained the wavefunctions and the wavenumber spectrum for an electron in 
an ellipsoid metal shell. As we can see, the expression we obtained for the radial 
wavefunction R(ξ) tends to the known expression for a radial wavefunction of an electron 
in a spherical nanoshell [21] when our shell tends to spherical (ξ→∞). This validates the 
results we obtained. 
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4. THE MATRIX ELEMENTS OF THE OPTICAL TRANSITIONS. THE 
NANOSHELL OPTICAL CONDUCTIVITY IN THE FROM OF A SUM OVER 
ELECTRON STATES 
 

Now, having the electron wavefunctions and the energy spectrum, we can calculate 
the matrix elements of the optical transitions that enter into (3). From the system 
symmetry the equality <i|x2|f>=<i|x1|f> implies, so we have to calculate only <i|x3|f> 
and, for instance, <i|x1|f>. For the matrix element <i|x1|f> we have 
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here we used the expression (27) for an electron wavefunction, the relation |η|<η0<<1 
(see the previous chapter) and the expression (A5) from the Appendix for a small volume 
element in the spheroidal coordinates. From here on non-primed quantities relate to the 
electron initial state, primed ones – to the final state. 

Now we note that in this sum we can leave the addends with  q=q’ only. Addends 
with q≠q’ give the functions that quickly oscillate by η, so they will be negligibly small 
after the integration. Also, in typical cases the photon energy ωℏ  (for instance, 0,1 eV for 
a CO2 laser) is much less than the Fermi energy of the shell metal EF (3-5 eV for typical 

metals). So, we can introduce the quantity 
FE

ω
ν
ℏ

≡  and consider that it satisfies the 

relation ν<<1. Using the fact that an electron distribution function for the shell metal is 
close to the Heavyside function, we, after rather complex transformations, can rewrite (35) 
in the form 
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The matrix element <i|x3|f> requires more complex transformations. The starting 
expression 
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after applying the analogous considerations plus the method of a stationary phase (see, for 
example, [29]) for the integration by ξ and the numerical integration, can be transformed 
into the following: 
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To verify the results we obtained, let’s compare them with the analogous expressions 
for a spherical shell. For the latter, the radial wavefunction in the spheroidal coordinates is 
written 
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where r1,2 are the internal and external shell radii, correspondingly. Then, after 
corresponding transformations the radial part of the matrix element (all three of them are 
equal because of the system symmetry) can be written 

    ( )( ) 







−−−

−
=><

−+

+

22

'

12

11
11

1
||

kkrr
fxi

nn

r ,                           (40) 

where 'kkk ±=± . For an ellipsoid nanoshell, an intermediate expression for the radial part 

of the matrix element, for example, by x1 can be written 
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where ( )akkc ±=± ' . This expression, really, tends to (39) if an ellipsoid shell is deformed 

into a spherical; similarly for the matrix element by x3. So, such passage to the limit 
substantiates the results we obtained. 
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5. CALCULATIONS OF THE OPTICAL CONDUCTIVITY 
 

Using matrix elements of the optical transitions we obtained in the previous chapter, 
we can obtain the optical conductivity of an ellipsoid metal shell. After substituting these 
matrix elements into (3) and certain simplifications we can write down 
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(43) 
First, we shall perform the summation over l, m, l’ and m’. For the orthogonal 

conductivity component the summation can be easily performed, we obtain  
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The sum that enters into (43) requires more complex transformations. After using the fact 
that the discrete function ( )')1(1 nn−−−  can be replaced with its average equal to 1 (in 
analogous way to the calculation accomplished in [30]), we can write down 
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The optical conductivity can be easily calculated if we neglect the discreteness of an 
electron energy levels and replace the sum that enters into (44) and (45) with the 
corresponding integral. This corresponds to the classical approximation – quantum effects 
related to the electron spectrum discreteness are not considered. We shall consider them 
later by calculating the correction to this classical expression. 

So, after performing integration in analogous way to [25], we obtain the following 
classical expressions: 
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where 
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After applying expressions for the shell volume (46) can be rewritten 
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The expressions obtained so far are classical (denoted by the index 0 in 0
⊥σ , 0

||σ ) – 

the quantum effects related with the electron energy quantization in the shell are not 
considered. As we mentioned before, such effects can become noticeable even in the case 
of small solid metal particles. And for thin metal shells these effects are much more 
essential. 

Using of the Poisson formula allows us to obtain analytical expressions for the 
optical conductivity that take into consideration these quantum effects. The Poisson 
formula applies to an arbitrary function of a natural argument y1(n): 
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Before applying (49) to (44) and (45) we should note that δ-function of a discrete 
argument doesn’t have mathematical sense. To give it necessary physical sense, we should 
use the fact that δ-function is a limit of a flock of classical functions. During a passage to 
the limit area under the graph of such classical function remains equal to 1 while the width 
of the peak (of graph figure, in general) tends to zero and height to infinity. 

It is convenient for us in such situation to use the concept of the ‘spread’ δ-function: 
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when the case ∆Е→0 corresponds to the ‘classical’ δ-function. 

Then, we notice that we can replace ωℏ+→ nn EE '  in (44) and (45). The 

possibility of such replacement implies from the look of the δ-function that expresses the 
energy conservation law in (44) and (45). After using such replacement, we can introduce 
the concept of the energy states density – the following function: 
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So, the expressions (44) and (45) contain ( )ωℏ+EG . After introducing the δ-function in 

the above-described way, the energy states density 
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becomes a classical function and the Poisson formula can be applied to it. (During the 

process we replace the discrete function ( )')1(1 nn−−−  with its average equal to 1 in 

analogous way to the calculation accomplished in [30].) Using the electron energy 
spectrum (33), we obtain 
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As it is easily seen, the first addend in (53) gives the known expression for the one-
dimensional energy states density. The addends of the series in (53) consider the 
oscillations of the states density caused by a spectrum quantization. After taking the limit 
∆E→0 we obtain relevant result for the function G(E). 

Now we can apply this summation method to (44) and (45). We apply it twice 
(summation over n and n’). Note that in this double sum we only keep the addends with 
s=s’; other addends are quickly oscillating and can be considered negligibly small after 
the integration. Taking into consideration the proximity of the electron energy to the 
Fermi energy and using the inequality EF>>θ (here EF is the Fermi energy of the shell 
metal and the quantity θ is the temperature in energy units), we obtain after complex 
transformations 
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here the function 
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and 

sϕ
~ is the following function of energy: 
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Numerical calculations show that the first five terms in the sum over s secure a sufficient 
accuracy for the quantum correction for typical shells and light frequencies. 
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As we can see, expressions for both conductivity components consist of two parts – 
classical conductivity, given by (48), and quantum corrections that consider quantum 
effects related with electronic spectrum quantization. Also, from the look of the 
expressions for electronic spectrum (32), (33) we can see that electronic spectrum for our 
shell becomes quasi-one-dimensional, similar to that of a one-dimensional potential well 
for electron. Really, if a shell is thin enough, a system becomes quasi-one-dimensional, so 
dependence of the optical conductivity components from ν should not depend from the 
shell shape. A shape of the shell is considered by a factor before this dependence. (See, for 
example, the expressions for a spherical shell [21].) 

Graphical representation of the relative quantum correction κ
σ

σ

σ
σ

≡
∆

=
∆

⊥

⊥
0
||

||

0
 as a 

function of the ratio ν for an ellipsoid nanoshell with parameters EF=5.53 eV (the Fermi 
energy of Au), temperature Θ=300 K, longitudinal shell thickness 

( )11 2
1

2
2 −−− ξξa =100 nm (for a thick shell oscillations behaviour becomes clear) is 

given on Fig. 1. 
 

 
 

Fig. 1. Relative oscillatory quantum correction κ for an ellipsoid shell with EF=5,53 
eV (the Fermi energy of Au), temperature Θ=300 K, longitudinal shell thickness 100 nm 
as a function of the ratio ν of the photon energy to the Fermi energy of the shell metal. 

 
We can see from the graph (and the numerical evaluation shows it, too) that these 

quantum corrections are essential and cannot be neglected, as in was predicted in 
introduction. For a thinner shell the contribution of these corrections is even more 
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essential. For example, for ( )11 2
1

2
2 −−− ξξa =10 nm (typical shell thickness) 

amplitude of the oscillations of the relation κ exceeds 200 in the vicinity of the point 
ν=0.2.  

So, the graph shows that considering of an electron energy quantization leads to the 
appearance of an oscillating dependence of the optical conductivity components from the 
incident light frequency. Analysis shows that the oscillations frequency depends from the 
shell thickness. As we mentioned in introduction, such type of dependence was noticeable 
even for relatively thick nanowires [14]. So, when investigating one-electron light 
absorption by nanoshells for the energies much less than the Fermi energy of the shell 
metal one should consider the effects caused by the electron energy spectrum 
quantization. 

Note that unlike the case of a spherical shell [21], optical conductivity of an ellipsoid 
shell is essentially a tensor quantity with two (for the considered case of a rotation 
ellipsoid) unequal, in general, components. 

Note also that when ℏ  formally tends to 0 (the classical case), the optical 
conductivity oscillations frequency (determined from (55) or (56)) tends to the frequency 
of classical oscillations. These are the oscillations with an electron passage frequency 
from one shell wall to other [31]. This fact also validates the results we obtained. 

 
RESULTS AND REMARKS 

 
Thus, we obtained the quasi-classical wavefunctions and calculated the wave number 

spectrum and the energy spectrum for an electron in a nanoshell with the shape of a 
stretched rotation ellipsoid. The metal shell was considered as a thin shell. We showed 
that in this case the system is quasi-one-dimensional (similar to the one-dimensional 
potential well for electron). As a result, the distance between the energy levels increases, 
and the quantum effects related to the discreteness of the electron energy spectrum 
become essential.  

Then, we found the matrix elements of the corresponding optical transitions and used 
them to represent the optical conductivity as the sum over electron states. This sum was 
used to derive the analytical expression for the optical conductivity of the considered 
shells.  

Firstly, we found the analytical expressions for the classical (with electron spectrum 
quantization ignored) conductivity (the electric absorption) of these particles. From this 
classical expression we can already see that for an ellipsoid nanoshell the optical 
conductivity becomes an essentially tensor quantity (it cannot be reduced to one scalar).  

Secondly, we considered the quantization effect and found the correction to these 
classical expressions. It was shown that this quantum correction makes an essential 
contribution into the total shell absorption. It was also shown that this correction depends 
on the incident light frequency in an oscillatory way. So, this oscillating effect should be 
taken into consideration when investigating light absorption of thin nanoshells for the 
energies much less than the Fermi energy of the shell metal as this quantum addend 
exceeds classical addend considerably. A dependence of the analogous nature was 
observed in the experiments with solid metal nanowires [14] and in the quantum theories 
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of thin metal films (see, e.g., [15]). Such an oscillatory dependence can be explained as 
follows. The light absorption is stronger when the energy ωℏ  is close to the difference 
between one of the electron energy levels and the Fermi energy. A smooth oscillating 
curve is observed instead of discrete peaks due to the thermal smearing of the electron 
distribution function by energy. 

Note that a tensor nature of the optical conductivity and, consequently, the 
dependence of the conductivity from an incident light polarization (implies from the fact 
that the field that enters into our expressions is a local field) are essentially new properties 
of an ellipsoid nanoshell comparing to a spherical shell. Note also that both expressions 
obtained for the optical conductivity components consist of two factors – a factor that 
depends from the light frequency and a factor that considers the particle shape. Therefore, 
for a thin shell the problem becomes quasi-one-dimensional (an electron in a one-
dimensional potential well) so the dependence of the shell absorption from the light 
frequency is not influenced by the particle shape. We can guess that an analogous effect 
should take place for a thin enough nanoshell of an arbitrary smooth shape. 

 
APPENDIX. SHPEROIDAL COORDINATES 

 
The spheroidal coordinates (ξ,η,ϕ) are linked to the rectangular coordinates through 

the following relations: 
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here 
)2,0[],1,1[),,1[ πηξ ∈ϕ−∈+∞∈ ,                               (A2) 

a is a constant parameter. 
The coordinate ϕ is equivalent to the polar angle in the spherical coordinates; the 

equation ξ=const describes a rotation ellipsoid with semiaxes 1, 2
|| −== ⊥ ξξ aRaR  

(where R|| is a semiaxis directed along a rotation axis of the ellipsoid), so the parameter a 
satisfies the relation 

22
||

2
⊥−= RRa .                                                 (A3) 

It is easily seen that 

( )
2

2
22222

1 η
η

η
−

++= yxaz ,                                   (A4) 

so the equation η=const describes a hyperboloid. We choose the upper hyperbola when 
η>0 and the lower hyperbola when η<0. Also, a differential of a volume for the spheroidal 
coordinates 

( ) ϕ−= dddadV ηξηξ 223                                         (A5) 
will be used in our calculations, too. 
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университета имени В.И. Вернадского. Серия: Физико-математические науки. – 2010 – Т.23(62), №3. – 
С. 75-93. 
Мы исследуем оптические свойства нанооболочек (малых композитных кластеров, состоящих из 
диэлектрического ядра и металлической оболочки; вклад металлической оболочки является 
доминирующим в оптических свойствах всего кластера) в области частот, далекой от плазмонного 
резонанса. Мы исследуем нанооболочки в форме вытянутого эллипсоида вращения. Для таких 
оболочечных частиц были найдены волновая функция электрона, спектр энергий и волновых чисел 
электрона, а также матричные элементы соответствующих оптических переходов. С использованием 
этих величин были найдены классическая оптическая проводимость (без учета квантовых эффектов) 
таких оболочек и квантовая оптическая проводимость (добавки к классической проводимости, 
квантовыми эффектами, такими как дискретность электронного спектра). Установлен осциллирующий 
вид зависимости этих слагаемых от частоты света, падающего на оболочку. 
Ключевые слова: нанооболочки, оптическая проводимость, малые кластеры, квантование спектра. 
 
Куліш В.В. Одноелектронні оптичні властивості еліпсоїдальних металевих нанооболонок / 
Куліш В.В., Томчук П.М. // Вчені записки Таврійського національного університету 
ім. В.І. Вернадського. Серія: Фізико-математичні науки. – 2010 – Т.23(62), №3. – С. 75-93. 
Ми досліджуємо оптичні властивості нанооболонок (малих композитних кластерів, що складаються з 
діелектричного ядра та металевої оболонки; внесок металевої оболонки є домінуючим у оптичних 
властивостях всього кластера) у області частот, далекій від плазмонного резонансу. Ми досліджуємо 
нанооболонки у формі витягнутого еліпсоїду обертання. Для таких оболонкових часток були знайдені 
хвильова функція електрона, спектр енергій і хвильових чисел електрона, а також матричні елементи 
відповідних оптичних переходів. З використанням цих величин були знайдені класична оптична 
провідність (без урахування квантових ефектів) таких оболонок та квантова оптична провідність 
(добавки до класичної провідності, квантовими ефектами, такими як дискретність електронного 
спектру). Встановлено осцилюючий вигляд залежності цих доданків від частоти світла, що падає на 
оболонку. 
Ключові слова: нанооболонки, оптична провідність, малі кластери, квантування спектру. 
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