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We developed a modification of the coupled mode theory for Schrddinger-type equations with periodic
potentials in the presence of an invariant perturbation. The scheme is applied to obtaining coupled mode
equations for perturbed spun optical fibres.
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INTRODUCTION

The development of singular optics has unveiled an extreme relevance of optical
vortices (OV) to the problem of increasing the “information capacity” of a signal [1-7].
However, free-space OV-based communication, along with other factors, suffers from
aberrations due to atmosphere turbulence [8], which results in scattering the initial OAM
state into the whole set of OAM states. In this regard communication via optical
waveguides seems to be more protected from perturbations. It has been suggested to use
for OV-based fibre communications the spun optical fibres, in which either the director of
induced transverse anisotropy or the major axis of the deformation ellipse regularly rotate
with z increasing [9, 10]. As has been shown, the modes of such may be circularly (CP) or
linearly (LP) polarized OVs.

The question of stability of OVs with respect to external perturbation in such fibres,
however, has not been solved. It turned out that the existing methods of treating
simultaneous action of z-variant and z-invariant perturbations are inapplicable, at least
without essential modifications, to this problem. In this connection the aim of the present
paper is to develop a modification of the coupled mode theory, which may enable one to
study the influence of z-invariant perturbation on the solutions of Schrdédinger-type
equations with z-periodic potentials. The developed method can be applied, in particular,
to the study of robustness of OVs in spun fibres to external z-independent perturbations.

1. MODIFIED COUPLED MODES THEORY

Though application of perturbation theory method proved to be convenient and
reliable for the solution of the problem of regularly spun fibres, in the case where the
refractive index is given by the sum of a periodic and a z-independent function, it seems
impossible to obtain any eigenvalue equation of the type suggested in [9, 10]. In such a
situation it is natural to try to make use of another powerful (and more conventional)
method — the coupled mode theory (CMT). However, its classical variant where the zero-
order Hamiltonian is assumed to be z-independent and the perturbation is given by some
periodic in z function [11], should be modified to meet the needs of our particular problem.
Indeed, in our case the modes of twisted fibres are formed by the periodic refractive index
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n(x,y,z), whereas the perturbation term An(x, ) is translational invariant. As is known, in

the scalar approximation, which seems to be sufficient for the description of vortex mode
regime, where the spin-orbit interaction (SOI) is suppressed by the twisting, the transverse
electric field E (for simplicity we omit the subscript “#”) satisfies the equation [11, 12]:

A+ 1202 (x,p,2) + An? (x, 9)JE(x, ,2) =0 . (1)

Here A is the Laplace operator, k =27/ Aand A is the wavelength in vacuum. The

regular refractive index n° describes the effect of twisting combined with the refractive
index distribution 7 (x, y) of an ideal fibre. For anisotropic twisted fibres one has [9]:

0 exp(—2iqz)j .

2 ~2 2
n“(x,y,z)=n"(x,y)+An
(. .2) =7 (x.7) (exp(Ziqz) 0

2

where An”~ = (ne2 — ng )/2 and ne2 , ng are principal values of transverse refractive index

tensor, ¢ =2m/ H , H is the twist pitch. As usual, 2 (x,y) = nc20 (1-2Af(x,y)) where

Ngo s the refractive index in the core, A is refractive index contrast, f'is the profile function
[12]. Note that in (2) we use representation in the basis of circular polarizations, where

E, = ( Ey FiEy, ) /2 . Refractive index in elliptical twisted fibres is given by [10]:

n2(x,y,2) = i (x,y) — 212, AS £l cos 2Ap— gz). 3)
where cylindrical polar coordinates (7, ¢, z) are implied, 0 <<1 is the ellipticity parameter.
Analogously to the standard variant of the CMT we start from the notion that the
solutions K, of zero-order equation are known:

A+ k2n? (3,9, 2)E p (x,y,2) = 0. 4)
In contrast to the standard CMT scheme, here the dependence of E;; on z does not

reduce to a simple multiplication by a factor exp(iﬁz) . We search for the solutions of the
equation for a perturbed fibre:

A+ k7002 (5,920 An? (e ) B (35, 32) =0 5)
in the form

E(x,y,z):nZ‘iAm (z)Em (x,y,z), (6)

where A4, (z) are the slowly varying amplitudes. Substituting (5) into (6) and allowing
for (4) one can get:

AE = Z{Am (Z)AEm(x, V,z)+2
m

(7

z Oz

aAm (Z) aEm (X, Y Z)} )

Here, as usual, we neglected the second derivative A,';q (Z) In the standard variant of

CMT the derivative E,m is replaced by iE,;, term. In our case, however, the situation

76



COUPLED MODES THEORY FOR PERTURBED SPUN OPTICAL FIBRES

is more complicated. As follows from the results of [9], the dependence of the modes E;,
on z is more intricate.

Indeed, as follows from the results of [9], modes of spun anisotropic fibres in case
vortex-mode regime is implemented are given (for the set with orbital number / =1) by
LP OVs, whose polarization adiabatically traces the direction of local anisotropy axes:

(cos (cos
Y, :e“ﬂ[ : qzj expl(if,z). @, :e"/’( . qZJ exp(if.z),
singz ),

singz ),
o[ —singz ) o[ —singz )
w250 ot oo 25 et
cosqz ), cosqz ),

where E = An’k’ describes initial anisotropy of the fibre, E is the scalar propagation
constant and the subscript L denotes representation in the basis of linear polarizations and

By =B+ABI2, AB=E/[ . From (8)it follows:
o,

iIABz a . iNGz

=B, +qe™y,, 2= iB g, + g™y,
Oz Oz

8 . —iABz a —l z

L 2} =if Y, —qe v Yy, Ay =iy, - ad y,. ©)
Oz 0z

Then the first term on the right of (7) being combined with the Amkzn2

vanishes due to (4) and one arrives at the standard equation:

2{2 A (2) aEméx,y,Z) +k2An2(x,y)Am (Z)Em} =0, (10)

7 0z z

E,, term

where for the derivatives Ej; one should use (9) (identifying W» with Ez;). Using
connection (9) in the form:

8Em

one can bring (10) to the form:

> 26’4’"—(2)Q k2 A% (x, y) 4 (z)o (12)

or  Zmk A7)0 By =

m,k

from whence it follows the desired equation in slow amplitudes 4, (Z)
: d4 2 2
20{11) 30,y =k S (1| n? m) iy (13)

In this equation we used standard Dirac’s notatlons, where the scalar product implies
integration over the total cross-section of the fibre. This equation is the main result of the
present paper and is a generalization of its more conventional form widely spread in the
literature. Note that here we do not specify normalization and the phase exponentials should be
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included into the structure of the modes |m> . The developed formalism can be applied to
study the effect of z-invariant perturbations on the mode structure in spun fibres.

For anisotropic spun fibres the perturbation operator An2 should be taken in the form:
An*(x,y)=on’G., (14)

where o, is the Pauli matrix and 5}12 characterizes induced birefringence. For elliptic

spun fibres one has

An? = —2ngo6Arf,l cos2¢ . (15)

Finally, let us make a remark on application of CMT to the problems concerned with
degenerate states. The classical variant of CMT implies using a periodic perturbation
An(x,y,z) on the background of aperiodic refractive index n(x, ). Suppose that the
perturbation term is also aperiodic and z-independent. In addition, let us assume that there
is degeneracy in the system and the fields E,, propagate with the same propagation

constant £ . Then (13) is reduced to

a2 2
2i(I|l) B—L ==k~ (I|An” |m) Ay, . (16)
dz m
where the vectors |m> have the same exponential factors so that there is no z-dependence on

the right of (16). Searching for the solution in the form Al =C ; exp(ifz) one readily arrives

at the standard eigenvalue equation for the perturbation matrix Vlm = <l | An2 | m> :
VA =2(I|)B°A . (17)
Here the factor <l | [ > reflects arbitrariness of normalization. In this way CMT can be
used for standard quantum-mechanical problems in the presence of degeneracy.

CONCLUSION

In this paper we have developed a modification of the coupled mode theory for
Schrodinger-type equations with periodic potentials in the presence of an invariant
perturbation. The scheme is applied to obtaining coupled mode equations for perturbed
spun optical fibres. The method developed may be useful while studying the question of
robustness of optical vortices in spun anisotropic and elliptical fibres with respect to
external perturbations, which do not depend on the longitudinal coordinate. This scheme
may also present an alternative to the standard perturbation theory with degeneracy.

References

1. Agarwal G.S. Spatial coherence and information entropy in optical vortex fields / Agarwal G. S.,
Banerji J. // Opt. Lett. — 2002. — Vol. 27. — P. 800-802.

2. Free-space information transfer using light beams carrying orbital angular momentum / Gibson G.,
Courtial J., Padgett M. et al. // Opt. Express. —2004. — Vol. 12. — P. 5448-5456.

78



COUPLED MODES THEORY FOR PERTURBED SPUN OPTICAL FIBRES

3. Bouchal Z. Mixed vortex states of light as information carriers / Bouchal Z., Chelechovsky R. //
New J. Phys. —2004. — Vol. 6. —P. 131-145.

4. Robust interferometer for the routing of light beams carrying orbital angular momentum /
Lavery M. P. J., Dudley A., Forbes A. et al. / New J. Phys. — 2011. — Vol. 13. — P. 093014.

5. Deterministic qubit transfer between orbital and spin angular momentum of single photons /
D’Ambrosio V., Nagali E., Monken C. H. et al. / Opt. Lett. —2012. — Vol. 37. — P. 172-174.

6. Transverse mode multiplexing using the helical eigen-beams of orbital angular momentum / Liu Y.-D.,
Gao C., Wang X. et al. // Opt. Commun. — 2012. — Vol. 285. — P. 888-892.

7. Djordjevic 1. B. Deep-space and near-Earth optical communications by coded orbital angular momentum
(OAM) modulation / Djordjevic I. B. // Opt. Express. —2011. — Vol. 19. — P. 14277-14289.

8. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric
turbulence / Zhu K., Li S., Tang Y., Yu Y. et al. // J. Opt. Soc. Am. A. —2012. - Vol. 29. — P. 251-257.

9. Alexeyev C.N. Vortex-preserving weakly guiding anisotropic twisted fibres / Alexeyev C.N.,
Volyar A. V., Yavorsky M. A. //J. Opt. A : Pure Appl. Opt. —2004. — Vol. 6. — P. S162-S165.

10. Alexeyev C. N. Optical vortices and the higher order modes of twisted strongly elliptical optical fibres /
Alexeyev C. N., Yavorsky M. A. // J. Opt. A : Pure Appl. Opt. — 2004. — Vol. 6. — P. 824-832.

11. Hall D. J. Selected papers on coupled-mode theory in guided-wave optics / ed. Hall D. J. — Bellingham :
SPIE Optical Engineering Press, 1993. — 569 p.

12. CHaiinep A. Teopust ontuueckux BosnHOBooB / CHaiinep A., JIaB [lx. — M. : Paauo u cBs3b, 1987. — 656 c.

AnexceeB K.M. Teopisn 3B’s3aHMX MoOA [ 30ypeHHX CKpPYYeHHMX ONTHYHUX BOJIOKOH /
Anexcees K. M. / Bueni 3anmcku TaBpilicbKoro HamioHaJbHOTO yHiBepcuTeTy imeHi B.I. Bepraacwkoro.
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Po3BuHena Moaudikamis Teopii 3B’s13aHIX MOJ ISl piBHAHB TUITy LlIpeaunrepa i3 mepioJUYHIM MOTEHIIaIOM
y NPUCYTHOCTi iHBapianTHOro 30ypenHs. Cxema MpHKIaZeHa OO OTPHMaHHS PIBHSHb 3B’SI3aHUX MOJ IS
30ypeHHX CKPYyUYEHHX ONTHYHHX BOJIOKOH.

Knrouoei cnosa teopis 3B’ 13aHIX MOJI, CKPYUEHi ONTHYHI BOJIOKHA.

AunexceeB K. H. Teopusi cBsI3aHHBIX MO 1Jsi BO3MYUIEHHBIX CKPYYE€HHBIX ONTHYECKUX BOJIOKOH /
AllekceeB K. H.// VYuensle 3aIIMCKHU TaBpuueckoro HalMOHAJILHOT'O YHUBEPCUTETA
umenn B.1. Bepnanckoro. Cepusi: dusnko-maremarnueckue Hayku. — 2012, — T. 25(64), Ne 1. — C. 75-79.
Pa3Bura MopmQuKaIys TEOPHH CBSI3aHHBIX MOA Ul YPaBHEHWH THIA MIPEAUHTEPOBCKOTO C MEPHOTUIHBIM
MOTEHIMAJIOM B TPHUCYTCTBHM MHBAPMAHTHOTO BO3MyIleHHs. Cxema NMpUIOKeHa K MOMYy4YEeHHIO YpaBHEHMI
CBSI3aHHBIX MO/ JUIsl BO3MYIIIEHHBIX CKPYUYEHHBIX ONTHYECKUX BOJIOKOH.

Kniouesvle cnoga: Teopust CBSI3aHHBIX MOJI, CKPY4YEHHBIE ONTHYECKUE BOJIOKHA.
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