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In this work the model of anisotropic spin-1 non-Heisenberg magnet with exchange anisotropy is studied. It is
shown that the anisotropic spin nematic state is realized in the system. The conditions of this phase stability
and angle of vector-director orientation are determined. The dispersion laws for magnons of different
polarization are calculated in anisotropic spin nematic phase.
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INTRODUCTION

It is well known that the complete description of the spin-1 systems requires account
of both, the dipole and the quadrupolar magnetic moments. The average values of the spin

per site is m=<S>, and quadrupolar spin average is O, =<S,5,+S,S, >. The

appearance of nontrivial values of these magnitudes lead to different ordered states. The
magnetic state (ferromagnetic, antiferromagnetic) is characterized by nontrivial value of
the average spin m, but for the nematic state m =0, and the spontaneous symmetry

breaking is manifested in nontrivial properties of quadrupole average values Ql.].. The

nematic state usually appears in isotropic model with bilinear and biquadratic interaction
of the spins. However, the isotropic model of a magnetic is idealized; therefore, as to
approach the real systems we have to take into account the anisotropy. Account of the
magnetic anisotropy leads to appearing different magnetic phases, for example, the easy-
axis or the easy-plane ones in ferromagnetics. The magnetic anisotropy can be introduced
by two ways: either considering anisotropic properties of magnetic ion (single-ion
anisotropy), or introducing anisotropy of exchange interaction of the spins. Usually, if the
anisotropy is small enough, then both kinds of anisotropy lead to the similar effects for
ferromagnetic state, namely, the easy-axis state, or the easy-plane state is realized in the
ferromagnet. Their properties can be studied within the frames of Landau-Lifshitz
equation. It will be shown below that the single-ion anisotropy and the exchange
anisotropy influence the properties formation in the nematic state differently, apart from
the ferromagnetic one.

The spin nematic dynamics is described by the vector-director, which direction is
infinitely degenerated in the isotropic case. So, the isotropic spin nematic spectrum
contains two modes, degenerated on polarization, which soften in the transition point into
the ferromagnetic state [2]. The magnons in isotropic spin nematic have all properties of
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Goldstown’s excitations far from the transition point. In the limit of small wave vector
they have a linear dispersion law and damping is quadratic in frequency [3].

Account of the single-ion anisotropy partially removes the degeneracy of the ground
state. So, the anisotropic spin nematic state with the anisotropy easy-plan type for vector-
director can be realized in the system [4]. The result of such degeneration is the
appearance of the activation mode in the anisotropic spin nematic spectrum. This situation
has been studied in details in work [4], where the dispersion laws and damping are
considered for both branches.

The aim of the present work is a determination the exchange anisotropy role in spin
nematic state formation.

1. THE GROUND STATE AND PHASE DIAGRAM

The Hamiltonian of spin-1 anisotropic crystal magnet with the nearest neighbors
interaction is given by [2, 4]:

H:—%ZSnsm—%Z(snsm)%ng;s;. (1)

Here the parameters J, and J, define the bilinear and the biquadratic exchange

interaction between the nearest neighboring spins; §, is the spin operator at site 1 ; the

constant B defines the anisotropy of spins interaction (exchange anisotropy).
It is convenient to use the generalized coherent states to describe the nematic phase

[5, 6]:
wv)= 3 (“A/”"J‘)“V/‘% 2)

Jj=x.y.z

where u and v are the real vectors; |\|Ix> = (| —1> —|+l>) / \E ,
‘\yy> = i(|—l>+|+l>)/\/5, |\|/Z> =|O> are the usual states with spin projection

S, ==%1,0. Taking into account the condition of normalization and the phase factor
arbitrariness, these vectors satisfy two conditions:
u+vi =1, u-v=0. 3)
In terms of the variable vectors uand v, the vector of average spin values and the
quadrupolar average ones are given by the equations [5, 6]:

(S)=m=2[uv],
(S8, +8,8,)=2(8, —uu, —vy,).
The average Hamiltonian’s (1) value on the states (2) defines the system energy in
the mean-field approximation built with subsequent consideration of the quantum
properties of the spin-1 system. In terms of the variable vectors u and Vv, given on

different lattice sites, this energy is determined by the sum on pairs of the nearest
neighbors:

4
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W, v) =W, (u,v)+W, (u,v). (5)
w,=2(J, —Jl);[(unum)(vnvm)—(unvm)(Vnum )]—
_%n’zm[((unum)+(vnvm))2 +((uy¥n) = (Vo)) |

is the isotropic part of the energy, which describes the isotropic spin nematic state and has
been received in work [1], and

VVa = 2Bz<un,xvn,y UV x ) (um,xvm,y Uy Vi ) b (7)
n,m

is the anisotropic part of the energy.
Suppose that u, =u_ =u and v, =v_ =V, we will get the one-site part of the

Here

(6)

energy, that defines possible homogeneous system states.

J, 1 1
W:—?2+5(J2—Jl)(mf+m§)+5(J2—J1+B)mZZ. (8)

It is obvious that the nematic phase is stable at J, —J, >0 and J,—J, +B>0.1f,
at least one of these constants combinations (8) is negative, then the nematic phase loses
the stability as to transition into ferromagnetic phase with m” = mf +mi +mz2 =1.1tis

easy to show that the ferromagnetic easy-axis phase is realized at B <0, and the
ferromagnetic easy-plane phase is stable at B >0. In the limit case of the isotropic
magnet at B=0, and at J, —J, <0 the isotropic ferromagnet state exists. The magnetic

phase diagram for S =1 and with the account of the exchange anisotropy is given in the
picture below.

As the energy in the nematic phase does not depend on the exchange anisotropy
constant, the direction of the vector-director remains completely degenerated as well as in
the isotropic nematic. Thus, the exchange anisotropy does not remove the degeneracy of
the ground state, as well as the single-ion anisotropy [4]. However, the exchange
anisotropy removes the degeneracy of two branches of the spectrum which will be show
below.

2. SPECTRUM OF THE SPIN NEMATIC

Within the frames of mean-field approximation the dynamics of the magnet with
Hamiltonian (1) is described by the Lagrangian [5]

L=-2hY v,0u,/ot—W(u,v). (9)

It is necessary to take into account small transverse deviations of the vectors u and
v from the ground state to find the magnon spectrum. Because of the exchange
anisotropy the system has dedicated direction, and the spectrum of the system depends on
the vector-director orientation in respect to the anisotropy axis.
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Fig. 1. Phase diagram of the anisotropic magnet in model (1). Continuous lines
correspond to the loss of the stability of the spin nematic state (Spin Nematic) as to the
transition into the easy-plane ferromagnetic state (EP FM, at B > 0), or into the easy-axis
ferromagnetic state (EA FM, at B <0); the dot line B=0 at J, >.J, corresponds to the

degeneracy of the isotropic ferromagnetic state.

It is convenient to introduce the new coordinate system e,,e,,e, in which the axis
e, coincides with the direction of the vector-director:
€ =€,
e, =—€ cosa+e_sina, (10)
e, =e sina+e, cosa.

Further, let us re-define the vectors u and v in terms of the Cartesian components of
the small deviations from the ground state

un = (un,l b un,z ’1 - un,B )’
Vn = (vn,l > vn,2 ° vn,3 )

The Lagrangian is shown in the form of decomposition on these deviation’s degrees.
For calculating the spectrum, we can restrict ourselves with the account of only the

(1)

quadratic terms of small deviations u, ,,u,, and v

n

1>Vao - The vectors u, ,,u, , have

n,l?
sense of the generalized coordinates of the system, and —2hv, |,—2hv, , correspond to

canonical impulses [3]. So, if we have exchange anisotropy, then there are two branches
the transverse oscillations of vector-director in spin nematic which are polarized in
perpendicular directions.

We have to go to Hamilton formalism to describe the non-equilibrium
thermodynamics.

It is convenient to realize this transition on the basis of Lagrangian, similar to work
[3]. As the result the Hamiltonian is diagonal and represents the Hamiltonian of non-
interacting magnons:
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H=> ¢(k)ala,+ & (k)bb,. (12)
i

Here af,a, and b),b, are the operators of creation and annihilation of the magnons

which are polarized along e, and e,, respectively; theg, (k) and &, (k) are their

dispersion laws:

& (k) =2, (1=c(K)) 1, (1=¢(K)) +2(, = J, + Bsin’ &) e (k),
&, (k) =2, (1-c (k) /5 (1= c(K))+2(J, =/, )e (K).

(13)
Here c(k) = (1 / Z) ZGXp(ika), z is the number of nearest neighbors; a is the radius-

a
vector of the nearest neighbors in lattice, which is cubic.
The dispersion laws are activationless for the small wave-vectors ak <<1:

& (k)= k\/z\/2z(J2 —J, + Bsin’ 0{)+(—J2 +2J, —2Bsin’ a)a2k2 ,

& (k) =\, \22(J, =)+ (=), +2J, ) a’k’.

The dispersion laws of both branches of spectrum are linear on the wave-vector in the
whole region of stability.

g (K)=tc(a)k,  c(a)=(aln)\22/,(J,~J, +Bsin® a);

(14)

(15)
& (k) =he,k, ¢, =(a/n)2zJ,(J,-J,).

Thus, the magnons, which are polarized along €, and e, , have different velocities of

propagation. The exception is the case when the vector-director is parallel to the

anisotropy axis z . Anisotropy affects the velocity of only those magnons which are

polarized in the direction perpendicular to the plane containing the anisotropy axis and
vector-director.

4. THE ACCOUNT OF THE FLUCTUATION

Usually, within the frames of phenomenological theory the account of the anisotropy
leads to a definite magnetic phase already at the 7'= 0 (for example, the easy-plane phase
or the easy-axis phase). Moreover, this state exists at limit low temperatures. In other
words, thermal fluctuation addition to energy is small at quite low temperatures, and it
may be neglected. But in our case its account is important. In fact, at the temperature
T'=0, the energy of the spin nematic does not depend on vector-director direction. But
even elementary the addition, due thermal magnon, depends on the angle «r .

The addition to energy AW,, appearing from every magnons branch contribution,

which is considered as ideal gas, is given by:
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AW, = [ &, (k) dk, (16)
where 7, is Bose’s function of magnons for the given branch, i=1, 2;
1/n,, =exple, (k)/T]-1. At low temperatures, ' << max(J,,J,,B), the integral in

(16) can be easily calculated, and its value equals (72'4 / 15)T */h*c’. Thus, the value

AW certainly depends on ¢, it is less for that magnons branch for which the magnons
velocity is larger. It means that the contribution in mode energy with i =1 for which

c=¢ (a) is minimal, if the angle & between the anisotropy axis and the vector-director

is T/2.
CONCLUSION

Thus, while accounting the thermal additions, related to the magnons of the first
branch, for the vector-director uthe marked direction appears. If B > 0, then the vector-
director u is perpendicular to the anisotropy axis due to thermal additions in the ground
state, that is, the spin nematic has the easy-plane anisotropy. In this case, the spontaneous
breaking of system’s symmetry in respect to the vector-director u orientation in x) easy-

plane is preserved. If B <0, then the state with value sin® =0 is preferable, and then
u==e_. As the states with u=e, and u=—e_ are not physically distinguished, at

B <0 and non-zero temperature the spontaneous breaking of system’s symmetry is
absent, and nematic state is not realized.

In conclusion it should be noted that one should expect another effect, then the
Goldstone’s behavior of magnons damping in the vicinity of softening points.
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Byrpim B. 1. BiuiuB marnitHoi aHizoTpomii Ha (opMyBaHHS BJIACTHMBOCTell CHiHOBOro HeMaTHKa /
B. 1. Bytpim, A. JI. Moiceenko // Bueni 3ammcku TaBpiliCbKOTO HAamiOHAJBHOTO YHIBEPCHTETY IMEHi
B. I. Bepnancekoro. Cepis : dizuko-matemarnyni Haykn. — 2013 — T. 26 (65), Ne 2. — C. 53-59.

B poboti nmocrmikeHa MOJENh aHI30TPOIHOTO HETeH3eHOEPriBChKOr0 MAarHeTHKa 31 CIIMHOM OJUHHIII Ta
oOMiHHOIO aHi3oTpomiero. [Toka3aHo, IO B CHCTEMI pealli3yeThCsi CTaH aHi30TPOITHOTO CIIIHOBOTO HEMATHKA.
Busnaueni yMoBH cTiiikocTi miel ¢asu Ta KyT opieHTauii BekTopa-aupekropa. OOUHCIIeHi 3aKOHH ANCTIepCil
JUIS MATHOHIB 3 Pi3HOIO MOJIsIpU3ali€ero y ¢asi aHi30TPOIMHOro CIiHOBOIO HEMaTHKA.

Knrwwuoei cnosa: oOMiHHA aHI30TPOIIS, aHI30TPOITHUN CIIIHOBUH HEMATHUK, 3aKOH JiCTIepcii.
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Byrpum B. U. Biausinne MarauTHoii aHuzoTponuyu Ha ¢popMHUpOBaHHe CBOIiCTB CIMHOBOI0 HeMAaTHKA /
B. U. Byrpum, [I. /I. Mouceenko // Yuensle 3anucku TaBpU4ecKOro HaMOHAJIBLHOTO YHUBEPCUTETa UMEHHU
B. U. Bepnaackoro. Cepus : Puzuko-matematndeckue Hayku. —2013. — T. 26 (65), Ne 2. — C. 53-59.

B pabote mccmemoBaHa MOmENb aHU3OTPOITHOTO HETEH3EHOEPrOBCKOTO MarHEeTHKa CO CIHMHOM EIWHHIA H
obmeHHOH aHm3oTpomnuei. [lokazaHo, 4TO B CHCTEME peann3yeTcss COCTOSHHE aHW30TPOIHOTO CIHHOBOTO
HemaTHKa. OnpeneneHsl YCIOBHS yCTONYMBOCTH 3TOH (ha3bl M Yol OPHEHTAIMH BEKTOPa-AUPEKTOpa.
BrrunciieHbl 3aK0HBI AUCTIEPCHU TSI MAarHOHOB PAa3IMYHBIX MOJISIPH3Ai B (aze aHM30TPOITHOTO CITHHOBOTO
HeMaTHKa.

Knirouesvle cnoea: oOMeHHast aHM30TPOINNS], AHU3OTPOITHBIH CITHHOBBINA HEMATHK, 3aKOH JTUCIEPCHHL.
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