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INTRODUCTION 
 
The idea of that the researches of multidimensional objects, including strings, may 

form a basis for our understanding of the Nature has already been expressed rather neatly 
in modern physics. One of the directions of those researches in the string theory deals with 
the role of such objects in cosmology. The gauge theories of Grand Unification, which are 
based on the idea of a spontaneous symmetry breaking, predict a possibility of the 
formation of one-dimensional topological defects in the course of phase transitions in the 
early Universe. Those objects were called space strings [1-7]. 

In work [8], it was shown that the presence of such objects in the Universe does not 
contradict the existence of the observed microwave relic radiation. Null strings realize the 
zero-tension limit in the string theory [5, 7]. Therefore, since the tension is measured in 
units of the Plank mass, M , scale, the zero-tension limit corresponds, from the physical 
viewpoint, to the asymptotically large energy scale, E >> M. From this viewpoint, the 
null strings, which realize a high-temperature phase of strings, could arise at the Big Bang 
moment and, hence, affect the observed structure of the Universe. In particular, in work 
[9], it was demonstrated that, by considering the gas of null strings as a dominant source 
of the gravitation in D-dimensional Friedman Robertson Walker spaces with 0k  , one 
can describe the inflation mechanism typical of those spaces. 

In a number of works, the gas of relic null strings is considered as one of the probable 
candidates for the role of a carrier of the so-called “dark” matter, the existence of which in 
the Universe can be regarded as an proved fact. Although, the object of research in the 
quoted examples is not a separate null string, but a gas of null strings, the properties of 
this gas still remain unclear. In our opinion, the first step to understanding the properties 
of the gas of null strings may consist in the solution of the problems concerning the  
gravitational field generated by a null string moving along different trajectories, as well as 
the dynamics of a test null string in such gravitational fields. 

For instance, let the equations of motion for a test null string have solutions that can 
be interpreted as moving test null strings with time-independent shapes determined by 
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initial conditions. At the same time, the trajectory of this null string is similar to that of the 
null string generating the gravitational field. Then, we may say that there exist a state (a 
phase) of the ideal gas consisting of identical null strings. The existence of such a gas may 
form a basis for the formulation of various multistring problems. 

In this work, the dynamics of a test null string in a gravitational field generated by a 
closed “thick” null string that radially expanding or collapsing in the plane 0z   is 
considered. In this research, we are interested first of all in the presence of solutions for 
the equations of motion that would give rise to the possibility of the existence of a state (a 
phase) of the ideal gas consisting of identical null strings in this gravitational field. We are 
also interested in the features of the interaction between the test null string and the string 
generating the gravitational field. 

 
1. EQUATION OF MOTION FOR A NULL STRING 
 
The quadratic form describing the gravitational field of a closed “thick” null string 

radially expanding or collapsing in the plane 0z   can be presented as follows [10, 11]: 

        
2 2 2 22 2 2dS e dt d B d e dz      .                             (1) 
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t   .                                                             (5) 

The functions     and     are coupled by the relation 

     01 / f     ,  0f const ,                                      (6) 
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 , 8 G  , the functions     and  f z  are finite and, at 

every  ;    and  ;z   , acquire values within the intervals 
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 0 1   ,    00 f z f  .                                        (7) 

The limiting cases are [10, 11] 
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where   and z  are small positive constants that determine the “thickness” of the 
“thick” null string generating the gravitational field ( 1 , 1z ). In the limiting 
case of the contraction into a one-dimensional object (a null string), the following 
conditions (at 0   and 0z  ) have also to be satisfied: 
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As an example, the following functions [10, 11] satisfy conditions (10): 
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Here, the constants   and   determine the size (the “thickness”) of the “thick” null 
string that generates the gravitational field (depending on   and z , respectively), and the 
positive constant   and   provide the satisfaction of conditions (10) at 0   and 

0z  , namly, 
, ,    ,  0  .                                              (12) 

The dynamics of a null string in the pseudo-Riemannian space is governed by the 
following system of equations: 

, , ,( ) 0m m p q
pqx x x x    ,                                         (13) 

, , 0m n
mng x x   ,  , , 0m n

mng x x   ,                                         (14) 

where mng  and pq
m  are the metric tensor and the Cristoffel symbols, respectively, of the 

external space;   /,
mm xx  and , /n nx x    , the indices m, n, p and q take integer 

values from 0 to 3; the functions  ,mx    determine the trajectory of motion of the null 
string;   and   are parameters on the world surface of the null string;   is the space-
like parameter that marks the points on the null string, and   is time-like parameter. In the 
cylindrical coordinate system, 
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tx 0 , 1x , 2x , zx 3 , 

and the functions  ,mx   , which determine the trajectories of motion for the null string 
generating the gravitational field and are considered in this work, have the following form: 

t  ,    ,   ,  0,  ,0z    ,  0,2  .                   (15) 

From Eqs. (15), it follows that the null string that generates gravitational field is in 
the plane 0z   and has an infinitely large radius at the initial time moment. As the time t 
grows, the null string, remaining in the same plane 0z  , only decreases its radius, i.e. it 
radially collapses in the plane 0z  . 
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where  
q t   .                                                         (22) 

When integrating Eq. (16), the following two cases have to be considered: 

, 0,   ( )      ,                                             (23) 

, 0,   ( , )       .                                          (24) 
 
2. SOLUTION OF THE EQUATIONS OF MOTION FOR THE TEST NULL STRING 

IN THE CASE , 0   
 
In case (23), Eq. (20) looks like  
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Since the functions  ,B B z  and  2 ,ze    are positive at every  ;    and 

 ;z   , it follows from Eq. (20) that 
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 , 0,z z z    ,                                             (26) 

 , 0,      .                                             (27) 

Under conditions (23), (26), and (27), Eqs. (16), (18), and (19) are satisfied 
identically, and Eqs. (17) and (21) take the forms 

, 0q  ,                                                       (28) 

, , 0q   ,                                                     (29) 

respectively. Integrating Eq. (28), we obtain 
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where  0q   and  qP   are integration “constants”. One should pay attention that 

  0qP   ,                                                        (31) 

because, otherwise, we have   0q q  . The latter together with Eqs. (23), (26), and 
(27) means the realization of a static solution for the null string, which is impossible. 

Under conditions (23) and (30), Eq. (29) takes the form 

 , 0qP   .                                                   (32) 

From whence, taking Eqs. (5) and (31) into account, we have 

, 0, t const       .                                     (33) 

The solution described by Eqs. (26), (27), (30), and (33) means that, under condition (23), 
the closed test null string moves in the same direction as the null string generating the 
gravitational field, i.e. it collapses. At every fixed time moment t, all points of the closed test 
null string are equidistant from the axes z. Moreover, as follows from equality (26), the test 
null string is not localized in the single plane z in the general case. In other words, the obtained 
solution describes a closed test null string that, at every fixed time moment, is completely 
localized between two planes, 1z z const   and 2z z const  , where  1 minz z   

and  2 maxz z  , where  0;2  , on the surface of a cylinder with the radius 

t const    . At the same time, if we fix   0z z const    in Eq. (27), this case 
describes the radial collapse of the test null string completely remaining in the plane 0z z  at 
every time moment and preserving the circular shape. 

Hence, it follows from the obtained solution that there may exist a state for the gas of null 
strings, in which closed circular null strings located in parallel planes z const  (the 
polarization effect) collapse simultaneously preserving their shape, i.e. without interaction (the 
phase of ideal gas of null strings). 
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3. SOLUTION OF THE EQUATIONS OF MOTION FOR A TEST NULL STRING IN 
THE CASE , 0   

 
Integrating Eq. (19), we obtain 

       
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where the functions  0   and  P   (the integration “constants”) determine, with the 
respect to the variable  , the positions and the velocities, respectively, of null string 
points at the initial time moment. From equality (34), it follows that, in the case where 

  0P    at the initial time moment, i.e. the closed test null string does not rotate, its 
further dynamics will also evolve without rotation, so that 

    .                                                       (35) 

In this work, we have found a solution of the equations of motion for the closed test 
null string in case (24) and under the condition that its rotation is absent at the initial time 
moment, i.e. provided that 
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In this case, the variable   depends on the parameter   (it changes in time). Therefore, 
Eq. (36) describes the motion of the test null string “toward” the null string that generates 
the gravitational field. However, the polar angle corresponding to every point of the test 
null string does not vary in time. 

If the test null string moves “toward” the null string that generates the gravitational 
field, the  - value only increases. Therefore, 

, 0  .                                                           (37) 

The case , 0   describes the motion of a test null string in the same direction as the 
null string generating the gravitational field, but at a higher velocity, i.e. at a velocity 
higher than the speed of light, which is imposible. 

Under conditions (36), Eq. (20) looks like 
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From whence, taking Eq. (37) and the positive definiteness of metric functions into 
account, it follows that 
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In the case 
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where  0q   is the integration “constant”, Eq. (38) gives rise to  

 , 0,z z z    ,                                           (41) 

where  0z   is the integration “constant”. Under conditions (36), (40) and (41), the 
equations of motion (17)-(20) for the test null string are satisfied identically, and Eq. (21) 
takes the form  

, , 0q   .                                                 (42) 

From whence, taking Eqs. (22), (37) and (40) into account, we have 

0q t q const    .                                        (43) 

To summarize, Eqs. (36) and (40) describe the motion of a closed test null string with 
arbitrary shape “toward” the null string generating the gravitational field. At every fixed 
time moment t, all points of closed test null string are equidistant from the axes z, and the 
shape of the test null string given by the functions  0z   and  0   remains invariant. If 
the test null string is completely located in the plane 0z z const   at the initial time 
moment, its further dynamics evolves in this plane. The only possible shape for it is the 
circle. The radius of this circle can only increase in time (the closed test null string 
radially expands in the plane 0z z ). 

Hence, requirement (40) brings about a solution testifying to the possibility for the 
gas of null strings to exists in a state composed of two non-interacting subsystems. In each 
subsystem, the closed circular null strings are located in parallel planes z const  (the 
polarization effect). The null  strings radially expand in one subsystem and, 
simultaneously, radially collapse in another one without changing their shape, i.e. without 
interaction. 

Under conditions (36) and (37), the first integral of Eq. (16) looks like 

  2
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where 
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is the integration “constant”. One can show that, for the case 
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and taking Eq. (38) into account, the first integrals of Eqs. (17) and (18) take the form 
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where the function  2P   (the integration “constant”) determines the z-velocities of test 
null string points at the initial time moment; and, as follows from Eqs. (37), (45) and (47) 

 2 0P   .                                                       (49) 

From Eqs. (47) and (48), it follows that, in the case of (36) and (46), the variables  , 
q  and z , which determine the position of the test null string at every fixed time moment, 
are no more independent, but interrelated. 

From Eqs. (8) and (9), it follows that, for Eqs. (47) and (48), the whole region of 
variation for the variables   and z  can be divided into four domains depending on the 
sign of derivatives of the functions     and  f z : 

(I)  ;0   and  0;z  , in which , 0zf   and , 0  ; 

(II)  ;0   and  ;0z  , in which , 0zf   and , 0  ; 

(III)  0;   and  0;z  , in which , 0zf   and , 0  ; and 

(IV)  0;   and  ;0z  , in which , 0zf   and , 0  . 

Integrating Eq. (48) firstly at 0   (regions I and II; , 0  ) and then at 0   

(regions III and IV; , 0  ), and matching the obtained solutions across the boundary 
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in regions III and IV ( 0  ), 
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where  0q   is the integration “constant”. 
In each region, two possible directions of motion of the test null string along the axis 

z can be realized, , 0z    and , 0z   . Therefore, the solution of Eq. (47) in each region can 
be presented in the form 
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 
 

 
  

12

1

i i i
L L L

P
f U

P


   



  ,                                      (52) 

where the subscript L takes values I to IV and corresponds to the number of the region, in 
which the found solution is realized; the superscript i takes values 0 (the case , 0z   , the 
test null string moves in the positive direction of the axis z); the constants i

L  equal 

0 1 1 0 1I II III IV        ,   1 0 0 1 1I II III IV       ,                     (53) 

the functions  i
LU  , in view of the continuity of the obtained solution across the 

boundary 0  , look like 

 0
1IU F  ,   1

1IU F  ,   0
2IIU F  ,   1

2IIU F  , 

 
 

 
20

1 0
1

2III
P

U F f
P





  ,   

 

 
21

1 0
1

2III
P

U F f
P





  ,                      (54) 

 
 

 
20

2 0
1

2IV
P

U F f
P





  ,   

 

 
21

2 0
1

2IV
P

U F f
P





  , 

and the functions  1F  ,  1F  ,  2F   and  2F   are integration “constants”. 
From equality (52), it follows that the size, i.e. the radius, of the moving test null 

string is strictly related to its position with respect to the null string generating the 
gravitational field; i.e. it depends on the variable  . Analogously, since the function 
 f z  on the left-hand side of equality (52) is finite and the function     in the 

denominator of the right-hand side of this equality, in accordance with Eq. (8), tends to 
zero for    ; ;        , any choice of integration “constants” is always 
associated with a certain confined region symmetric in  , where equality (52) is satisfied. 
However, in this case, since there are no restrictions on the test null string coordinates z 
and t (in the general case,  ;   ), only those test null string that are located in this 
narrow region (the “interaction zone”) are “visible”, i.e they interact with the null string 
generating the gravitational field. The same test null string located at this moment beyond 
this zone, in accordance with Eq. (52), remain “invisible” for the null string that generates 
the gravitational field. Here, we cannot say that they do not interact, because, in the 
framework of the general theory of relativity, the absence of interaction manifests itself in 
the null string preservation without changing the trajectory of its motion. Whereas, in our 
case, it is impossible to say anything about the trajectory of motion of the test null string 
beyond this region. However, one cannot exclude that, at a certain time moment, such an 
“invisible” null string will enter this region, and its subsequent dynamics will be 
determined, at least until the time moment, when the test null string leaves it. In other 
words, the test null string, when entering this narrow “interaction zone”, already has a 
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prehistory, and its dynamics in this zone depends on the size, location, and direction of its 
motion along the axis z (it moves in the positive or negative direction of the axis z, i.e. 

, 0z    or , 0z   ), being determined by equality (52). 
Under conditions (44) and (50)-(52), Eq. (21) takes the following form in each region 

determined by the subscript L: 

 
 

 

 

 
 

2

2 2
0 0 ,

1 1
,

2 2 0i
L

P P
q f F

P P 



 
 

 

  
        

.                        (55) 

Here, the indices i and L have the same interpretation and accept the same values as in 
Eq. (52), and the functions  i

LF   are 

 0 0
1I IIIF F F    ,   1 1

1I IIIF F F   ,   0 0
2II IVF F F   ,   1 1

2II IVF F F    .  (56) 

The functions  kP  , 1,2k  , determine the initial momenta of the test null string 
points. As follows from equalities (52), the requirement 

     , ,k k kP F F const    ,   1,2k  ,                                (57) 

describes the case where the test null string shape is not changed (remains to be a circle) 
in the course of motion, and the variations of the radius of the test null string and its 
position on the axis z are determined by the form of the functions  f z  and    . 

Note that, under condition (57), Eq. (55) is reduced to a single requirement, 

   0 0 0, 0,q q q const


     .                                  (58) 

From Eqs. (50) and (51), it follows that the constant 0q  defines the surface, on which the 
test null string and the null string generating the gravitational field “meet”, while moving 
“toward” each other. 

Using Eq. (2), let us express Eq. (44) in the form 

      

      
 

2 4 2
,

, 12 2 4 2 / 1

f z
P





  

    
 

 

 

   


 ,                              (59) 

since the function      0 1f z       at any   and z , and the constant 

8 1G  , so that the difference 2 4 2 0   , Eq. (59) can be presented in the 
form 

  
 

,
, 12 P




 

 
 . 
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Integrating this equation, we obtain the following relations between the variable   
and the parameters   and   on the world surface of the test null string: 

in regions I and II ( 0  ), 

 
1

0 1( ) ( ) ( )P     

  ;                                         (60) 

in regions III and IV ( 0  ), 

 
1

0 1( ) ( ) ( )P     

  .                                         (61) 

Here, the integration “constant”  0   and  0   determine the value of parameter 
 , at which the test null string moving “toward” the null string generating the 
gravitational field meets the latter on the same surface. For instance, under condition (57), 
by fixing 

    0 0 0f const                                             (62) 

in Eqs. (60) and (61), we obtain that, at 0  , the parameter 0  . Moreover,  
in regions I and II ( 0  ) at  ;0  , the parameter  ;0   ; 

in regions III and IV ( 0  ) at  0;  , the parameter  0;   . 
Under conditions (57), (58) and (62), the variables   and q  determined by equalities 

(50), (51), (60) and (61) depend only on the parameter   by means of the relations 

 0 1f P   ,                                                   (63) 

 

 

  
 

22
22

0 0
1 1

PP
q q f

P P



 

 
    

 
,                                    (64) 

where the choice of the sign in Eq. (63) is related to the region of the test null string 
location (the sign “−“ at 0   and “+” at 0  ), and the function  0 1f P  is 

determined by the explicit form of the function    ; for example, for expression (11), 

  1 0
0 1

0 1

1 ln 1 ff P
f P

 
 

  
    

 
. 

Note that equality (52) put restrictions on the values of parameter  , i.e. they 
determine the boundaries of the region, in which the moving test null string becomes 
“visible” for the null string generating the gravitational field and interacts with it. 
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4. EXAMPLES OF TEST NULL STRING MOTION 
 
In the case , 0z   , the solutions of the equations of motion for the test null string in 

regions I and III look like 

1 0

0 1

1 ln 1 ft
f P

 
 

  
    

 
,                                     (65) 

 

 

  
 

22
22

0 0
1 1

PP
t q f

P P


 
 

 
     

 
,                                 (66) 

  2
1 0 2

1

Pf z F f P
P

  .                                             (67) 

In equalities (65) and (69), the upper sign is selected for region I (  ;0   ), and 

the lower one for region III (  0;   ). The interaction zone boundaries in those 
regions determine the minimum possible value of the right-hand side in equality (67) in 
region I, which equals zero and is reached at    

1 1
1 2 0 1 0F P f P

 
    (the leftmost 

boundary of the interaction zone), and the maximum possible value of the right-hand side 
in equality (67) in region III, which equals 0f  and is reached at 

      
1 1 1

0 2 1 1 2 0f P P F P
  

     (the rightmost boundary of interaction zone). 

 

 

Fig. 1. Plots of the  functions  t  ,     and  z   in region I in the case , 0z    at 

0 100f  , 1 1P  , 1
2 0P f  , 5     , 710  , 0 10q    and for various 1 100F    

(  1z  ), 90 (  2z  ), and 50 (  3z  ). 
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Fig. 2. Plots of the  functions  t  ,     and  z   in region III in the case , 0z    at 

0 100f  , 1 1P  , 1
2 0P f  , 5     , 710  , 0 10q    and for various 1 100F   (

 1z  ), 90 (  2z  ), and 50 (  3z  ). 
 

In Figs. 1 (for region I) and 2 (for region III), the functions  t  ,     and  z   are 
plotted for the case , 0z   , at the certain fixed values of  constants 1P  and 2P , and for 
three different values of constant 1F . The figures demonstrate that the test null string, 
when approaching the right boundary of the interaction zone (Fig. 2), becomes always 
pushed out by the gravitational field (the variable z) to the infinity within a very short time 
interval. 

From the given examples of the test null string motion, it follows that, in the case 
where the initial momenta of the test null string points along the axis z differ from zero  
(  2 0P   ), every test null string in the “interaction zone” is always either pushed out to 
the infinity (Fig. 2) or attracted to the plane, where the null string generating the 
gravitational field is located, irrespective of how far it is, by the gravitational field (the 
variable z) within a very short time interval. The specific scenario depends on the test null 
string position with respect to the plane, in which the null string generating the 
gravitational field is located, and the direction of the test null string motion along the axis 
z. In our opinion, the presence of trajectory sections with this anomalous behavior for 
every test null string in the “interaction zone” may indirectly testify that the ability to 
inflate can be an internal property of the gas of null strings. However, this statement 
requires an additional research. 

 
CONCLUSIONS 
 
By analyzing the results of this work, we may suppose that, since separate regions in 

the gas of null strings are causally independent at the initial time moment, there may 
appear a domain structure in this gas. In other words, there may exist a large number of 
separated regions, in which the null strings radially collapse in parallel planes (i.e. they are 
strictly polarized). The spatial orientation of those planes is random in every domain, 
without any correlation between neighbor domains. The conditions for such domains to 
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emerge and exist, as well as the physical processes in the interdomain regions, can be a 
subject of further researches of the gas of null strings. 
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Леляков О. П. Динаміка пробної нуль-струни в гравітаційному полі замкненої «розмазаної» 
нуль-струни, що прямує в площині / О. П. Леляков, А. С. Карпенко, Р.-Д. О. Бабаджан // Вчені 
записки Таврійського національного університету імені В. І. Вернадського. Серія : Фізико-математичні 
науки. – 2014. – Т. 27 (66), № 2. – С. 50-64. 
У роботі розглянута динаміка пробної нуль-струни в гравітаційному полі замкненої «розмазаної» нуль-
струни, що радіально розширюється або радіально колапсує в площині , за умови, що початкове 
обертання пробної нуль-струни було відсутнє. 
Ключові слова: «розмазана» нуль-струна, гравітаційне поле.  
 
Леляков А. П. Динамика пробной нуль-струны в гравитационном поле замкнутой 
«размазанной» нуль-струны движущейся в плоскости / А. П. Леляков, А. С. Карпенко,  
Р.-Д. А. Бабаджан // Ученые записки Таврического национального университета имени  
В. И. Вернадского. Серия : Физико-математические науки. – 2014. – Т. 27 (66), № 2. – С. 50-64. 
В работе рассмотрена динамика пробной нуль-струны в гравитационном поле замкнутой 
«размазанной» нуль-струны радиально расширяющейся и радиально коллапсирующей в плоскости, 
при условии, что начальное вращение пробной нуль-струны отсутствует. 
Ключевые слова: «размазанная» нуль-струна, гравитационное поле. 
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