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The paper is dedicated to the theoretical investigation of the antiferromagnetic vector distribution in a film
composed of an isotropic or uniaxial antiferromagnet in the presence of circular antidots. A solution of the
Landau-Lifshitz equation is obtained for the antiferromagnetic vector in such antidot system. The
antiferromagnetic vector distribution is obtained for a periodic system of remote antidots in an isotropic
antiferromagnet and for a couple of antidots (not remote, in general) in an isotropic antiferromagnet, “easy
axis” antiferromagnet and “easy plane” antiferromagnet with various boundary conditions.
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INTRODUCTION

It is known that magnetic nanostructures of different configurations — magnetic
quantum dots [1], magnetic thin films [2], magnetic nanospheres [3], nanowires [4] and
nanotubes [5], magnetophotonic crystals [6] and other nanostructures — are investigated
intensively in recent years. These nanostructures have found a multitude of technical
applications — in information storage and transmission devices [7], in magnetic resonance
imaging [8], for magnetic refrigeration [9] and so on. In particular, magnetic quantum dots
and their systems as well as magnetic antidots [10] (holes in thin films) and their systems
are perspective for various technical applications.

Systems of ferromagnetic [11, 12] and antiferromagnetic [13, 14] dots are studied
intensively in recent years. However, systems of ferromagnetic [15, 16] and especially
antiferromagnetic [17] antidots are poorly researched at the moment, and known studies in
this area are devoted mainly to exchange bias in antiferromagnetic antidot arrays. However,
antiferromagnetic antidot systems are promising for a variety of technical applications — in
information storage devices [18], in magnon waveguides [19], as a basis for magnetic
metamaterials [20], as two-dimensional magnonic crystals [21] and so on. Thus, magnetic
properties of antiferromagnetic antidots and their systems are an actual topic of research.

We consider a system of circular antidots in an antiferromagnetic film. We obtain a
distribution of the antiferromagnetic vector for the following antidot systems (with various
boundary conditions): a couple of circular antidots in an isotropic antiferromagnet, a
couple of circular antidots in an uniaxial antiferromagnet and a periodic remote antidot
system in an isotropic antiferromagnet.
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1. SETTING OF THE PROBLEM

Let us consider a two-sublattice antiferromagnetic film with a thickness d and direct
Oz axis in the normal to the film direction. Let us also consider a system of circular
antidots in this film, with radiuses R; and in-plane radius-vectors of the antidots axes {r;}
(see Fig. 1). We assume that the magnetization density of the antiferromagnet sublattices
(M; and M,, respectively) are equal in magnitude and opposite in direction, so that
M;=-M;, and are constant in magnitude, so that |M; =|M, =M, M,= const,
everywhere in the film. Thus, the total magnetization vector M =0, and the
antiferromagnetic vector is also constant in magnitude: |L| = L,= const. We also assume
that the film antiferromagnet is characterized by the following parameters: uniaxial
anisotropy constants 5, and f,, non-uniform exchange constants a,; and a, (where a,> 0), a
uniform exchange constant 4.

The goal of this work is to find a distribution of the antiferromagnetic vector in the
above-described antiferromagnetic film for a periodic remote antidot system and a couple
of antidots (in general, not a remote couple) with various boundary conditions.
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Fig. 1. Antiferromagnetic film investigated in the paper.

2. SOLUTION OF THE LANDAU-LIFSHITZ EQUATION. GENERAL FORM OF
THE ANTIFERROMAGNETIC VECTOR DISTRIBUTION

Let us write down the Landau-Lifshitz equation for a static distribution of the
antiferromagnetic vector L in the antiferromagnetic film that we consider in spherical
coordinates (7,0,¢). If we denote the azimuthal and polar angles of the vector L as ¢, and
0, respectively, the equation can be written in the following form [22, 23]:

céa’z’v(sin2 9LV¢L): 0
coAO, + ((gH0 ) —clAp, — )sin 0, cosd, =0’

AuMy —— 4uM
here H, is the external magnetic field, ¢y = % Aa] , @, :%JA,BI .

In the absence of the external field (H,= 0) the equation (1) — after dividing on the value

)

a)g — becomes similar to the static equation for the magnetization in an uniaxial
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ferromagnet with the exchange constant «; and the anisotropy constant /3;. This allows us
to use the solutions of this equation are given in [23]. Let us select the following solution:

tg(%j dn(FPXYZ s @)

0, =0(X.Y.2)

here X =x/1,, Y=y/l,, Z=z/1,; value [, =,/ /|ﬁ1| for ;#0, ly=1 for B;=0;

C is a constant that lies in the range - 1/4 < C; < 0 for this solution, and the values

_\/1+2Cl+ 1+4C, b_\/1+2c1—1/1+4cl . \/ 2. fi+4C,
- l - l 1=

2c| 2| 14+2C, +1+4C,
)
0 <k, <1 is the modulus of the Jacobi elliptic function. The functions P and Q for the

antidot system described in the “Setting of the problem” section can be written down in
the following form:

P= X h{ r(”q c,
ly , “4)
Q:_Z_G_ﬂl +Zaini+C3

0

here r is the radius vector of a point in a plane, ry; =(xy;,V0;) are in-plane radius vectors of
the antidots centers, n; are arbitrary integers, C,, C; are constants, ¢; is the azimuthal angle

relative to the point ry; (so that ¢, = arctg[&]) and the function
X = Xo;
0, £<0
O¢)= . 5
) {1, 550 5)

Let us consider specific antidots configurations and find forms of the solution (4) for
these configurations with specific boundary conditions.

3. COUPLE OF ANTIDOTS IN AN ISOTROPIC ANTIFERROMAGNET

Let us select the functions P and Q in the following form:

P=n lnm+n In M +C
1 l 2 2, (6)

0 lO

O=nep+n,a+C,
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where o is an azimuthal angle relative to the point r,. Such distribution corresponds, in
particular, to a couple of circular antidots in an isotropic antiferromagnet with their centers
in the origin of coordinates and in the point ). We consider the couple of antidots of the
same radii R; for the sake of convenience we choose the coordinate system so that the axis

d
of the antidot 2 lies on the semiaxis x > 0, so that r, = [0} d>0.

Let us consider the case when these antidots are not remote from one another, so that,
in general, the condition |r0| >> R is not satisfied. Then, the functions P and Q have the

following form on the antidots surfaces:

2
P=n, 1n£+n21n i\/1+R—2—2£COS¢ +C,
[, [, d d e

sin @
=n@+n,| r—arctg ——— |+ C
O=ng 2[ gd/R—COS(/) 3

on the surface of the antidot 1, and

2
P=nn i\/1+R—2+2£cosa +n,In R +C,
[ d d [ ®)

o
d/R+cosa

anlarctg( j+n2a+C3
on the surface of the antidot 2.

As we can see from (7) and (8), a simple and convenient choice of boundary
conditions — constant boundary conditions on antidots surfaces — cannot be made in this
case because the functions P and Q depend on the local azimuthal angle on the surface of
each antidot. However, we can set boundary conditions in some points of the antidots
surface, for example, on the intervals ¢ = 0 (for the first antidot) or & = 0 (for the second
antidot). In addition, we can set boundary conditions on some other interval of the

antiferromagnetic film, for example, in the point [ 0 j Let us consider various choices

of the boundary conditions.

Boundary conditions 1.

On the surface of the antidot 2 6,=n/2, ¢,=¢, for a=0, on the surface
of the antidot 1 ;= 1t/2 for ¢ = 0.

Substituting these boundary conditions into the solution (2), (6), we obtain
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b

0
2 |r—exd r
dn c\|C)|| nyIn| = |+n,In| — |+C, |k | 9)
ZO lO

O=nmp+na+g,

where e, is an ort of the Ox axis and the constants C;, C, should be found from the
conditions

| 2
c |C1| n, In d+R +n,In R +C, |=F arcsini,k1 +4K(k1)Nl
lO lO kl

2
c\/ﬂ{n, lnl£+n2 m[dl_Rj+ CZJ = F(arcsin —Vl]:b,li+4K(k1 N,
1

0 0

» (10)

here N; and N, are integers and F (¢, k) is the incomplete elliptic integral of the first kind:

3
dp
F(§,k):.|'T. (11)
041—k”sin” p
Systems (9) and (10) determine the sought constants C;, C>.

Boundary conditions 2.

d/2
On the surface of the antidot 2 8, =7/2, ¢, = ¢y for a =0, 8, = n/2 in the point [ 0 ) .

In this case, the solution (2), (6) takes an analogous to the previous case form (9). Let
us find the distribution constants C;, C,. From the boundary conditions on the surface of
the antidot 2 we obtain

[ 2
c\/ﬂ(nlln(d;RJJrnzln(lﬂJ+C2J=F[arcsin I;b ,k1J+4K(k1)N1,(12)

0 0 1

d/2
where N, is an arbitrary integer. Distribution (6) in the point ( 0 J has the following form:

d
P—(n1+n2)1nZ+C2 (13)

O=n,m+C,

2
hence, using the boundary condition in the point ( 0 ], we obtain
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[ 2
c |Cl|((nl+n2)1n%+C2J=F[arcsin ll:b ,k1J+4K(k1)N2, (14)

0 1

where N, is an arbitrary integer. The system (12), (14) determines the constants C; and C».
Boundary conditions 3.

d/2
On the surface of the antidot 2 6, =n/2 for a =0, ¢, = ¢y and ;= 1/2 in the point ( 0 j

From the boundary condition on the surface of the antidot 2 we obtain

2
cﬁ(nl m(d;R} n, h{lﬂ}u CZJ = F(arcsin Vl/:b ,li+4K(kl )N, (15)

0 0 1

where N, is an arbitrary integer. After taking into account (13), from the boundary

o _(dl2) .
condition in the point 0 implies

L2

d . N1=b
c |Cl|((n1+n2)lni+C2j:F[arc5m i Lk, +4K(k1)N2’ (16)

Cy =@y —ny7
where NV, is an arbitrary integer. The system (15), (16 ) determines the constants C;, C,
and C;.
4. COUPLE OF ANTIDOTS IN AN “EASY PLANE” ANTIFERROMAGNET

Let us select the functions P and Q in the following form:

o @r—rﬂ
=nIn—+n,Inf—— |+C,
IO b , (7
Q:l£+nl(p+nzoz+c3
0

where o is an azimuthal angle relative to the point ry. Such distribution corresponds, in
particular, to a couple of circular antidots in an uniaxial antiferromagnet with the “easy
plane” anisotropy. Similarly to the previous case we assume that antidots, in general, are
not remote and that their radii R are the same, and we choose the coordinate system in a

d
similar way, so that r, = (OJ, d > 0. Thus, the functions P and Q on the antidots surfaces

have the following form:
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P=n1h1]£+n21n li\/l ——2—c05(p]
0 0 (18)
——+n +n,| T —arct
0 [ i 2( gd/R COS(pj
on the surface of the antidot 1, and
2
P=nIn li\/l+§—+2§cosa +n21n[ ]
0 (19)
Q:li+nlarctg( sina j+n a+C,

0 d/R+cosa

on the surface of the antidot 2.
As we can see, because of the dependence of the function Q on z we cannot set

’
. : 1

constant boundary conditions for ¢, on some interval [ . However, we can set
%

n
boundary conditions in some point | ¢, |, and for the sake of simplicity we can choose the
2
origin of the Oz axis in the plane z =z,. Let us illustrate this approach on three different
sets of boundary conditions, analogous to the previous (antidots couple in an isotropic
antiferromagnet) case.
Boundary conditions 1.
On the surface of the antidot 2 6,=n/2 for a =0, ¢,= ¢, for a =0, z=0; on the
surface of the antidot 1 8, = n/2 for ¢ = 0.

From the boundary condition for ¢; we obtain C;= ¢, so the solution (2), (17) in this
case can be rewritten

MO
dn| c |C1|(n1 ln[l] +n, ln{l(J j +C, ],k 20)

0

zZ
Q:Z—+nl(p+n2a+¢0
0

with constants C;, C, determined from the conditions similar to the previous case:
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| 2
c |C1| n, In d+R +n,In LS +C, |=F arcsini,k1 +4K (k, )N,
[ [ k

0 0 1

,(21)

| 2
c |C1| n1h1£+n21n d-R + C, |= F| arcsin 1=b Jk, |+4K(k, )N,
l l k

0 0 1

here N;, N, are arbitrary integers. Systems (20) and (21) determine the sought solution for
the boundary conditions we consider.

Boundary conditions 2.
On the surface of the antidot 2 8, =n/2 for a =0, ¢, = ¢y for a =0, z=0; 6,=7/2 in

, (d/z]
the point .
0

In an analogous way to the previous boundary condition choice we obtain C;= ¢, so
the solution (2), (17) takes the form (20). Distribution constants C;, C, are found
analogously to the previous case, boundary conditions 2: from the boundary conditions on
the surface of antidot 2 we obtain

2
elc mim| R ) R v e, |= F aresin 172 & v ak )V, 22)
l I k

0 0 1

d/?2
where N, is an arbitrary integer, and from the boundary conditions in the point [ 0 ] we

obtain

2

c |C1|((n1 +n, )ln§+ C2] = F(arcsin ,k1]+4K(k1 )NZ, (23)
0

1

where N, is an arbitrary integer. The system (20), (22), (23) determines the sought
solution for the boundary conditions that we consider.

Boundary conditions 3.

d/2
On the surface of the antidot 2 ;= n/2 for =0, 8;,=n/2 on the interval [ 0 j,

@1 = @o on the same interval in the point z = 0.
In an analogous way, from the boundary conditions on the surface of the antidot 2 we
obtain

[ 2
c |Cl| n, In d+R +n,In £ + C, |=F| arcsin 1=b ke, [+ 4K (k,)N,, (24)
[ [ k

0 0 1
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where N; is an arbitrary integer. Similarly to the previous case, for the function P the

d
relation P = (n1 +n, )11’1 o + C, fulfils; from this relation,
0

2

c/IC, |[(nl +n, )m% + cz] = F(arcsin k, ] +4K(k, )N, (25)
0

1
implies, where &V, is an arbitrary integer. From the boundary condition for ¢, we obtain

C,=¢,—n,r. (26)

The system (24), (25), (26) determines the constants C;, C,, C;, and together with

(20) determines the sought solution.

5. COUPLE OF ANTIDOTS IN AN “EASY AXIS” ANTIFERROMAGNET

Let us select the functions P and Q in the following form:
r r—r
P:£+n1 an+n21n M +C,
[, [ [, (27)
O=nep+n,a+C,

where « is an azimuthal angle relative to the point ry. Such distribution corresponds, in
particular, to a couple of circular antidots in an uniaxial antiferromagnet with the
antiferromagnet of the “easy axis” type anisotropy. Similarly to the previous case we
assume that antidots, in general, are not remote and that their radii R are the same, and we

d
choose the coordinate system in an analogous way, so that r, = (Oj , d > 0. Therefore, the

functions P and Q on the antidots surfaces can be written as follows:

2
P=l£+nlhll£+n2 ln(li\/l+R——2§COS(PJ+Cz

2
0 0 0 d (28)
sin ¢
=n@+n,| r—arctg———— |+ C
Q=mgp 2( gd/R_CowJ 3
on the surface of the antidot 1, and
2
P=l£+n]ln[li\/l+R—2+2§cosaJ+n2ln(lﬁJ+C2
0 0 d ‘ 0 (29)
=narctg| ——— |+ n,a+C
o=n g(d/R-i-COSO!j ? ’
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on the surface of the antidot 2. Analogously to the previous case we cannot set the
h
?,

function 6, on z, so we have to set at boundary conditions for the function #; in some
point. In a similar way to the previous case, it is convenient to choose the origin of the
axis Oz in this point. Note that because of the presence of two constants C; and C, in the
general form of the function 4,, in order to determine them we have to specify the function
6, in two points, and for the sake of convenience we can choose two points with the same
z-coordinate and set the origin of the Oz axis in these points. Having made these remarks,
we can now find the distribution of the antiferromagnetic vector in an analogous to the
previous two cases way. Let us consider three analogous boundary conditions sets.

Boundary conditions 1.

On the surface of the antidot 2 ,=m/2 for a =0, z=0, .= @y for o =0; on the
surface of the antidot 1 §,=n/2 for p =0,z =0.

Solution (2), (27) in this case can be rewritten as

2 i |l"—€xd| L
dn| c\|C|| = +nIn| = |+n,In| — |+C, |,k |- (30)
[ [ [

0 0 0

boundary conditions on the interval [ j, but this time because of the dependence of the

O=np+na+e,
After substituting the boundary conditions into it we can see that the distribution
constants C;, C, are determined from the same system (21) as in the previous case.

Boundary conditions 2.
On the surface of the antidot 2 8,=7/2 for a =0, z=0, ¢, = ¢y for a=0; ,=7n/2 in

d/?2
the point | 0
0

From the boundary conditions for ¢, in a similar way to the previous boundary
conditions choice we obtain C; = ¢,, so that the solution of (2), (27) takes the form (30).
The system for determining the distribution constants C;, C, has the same form as for the
boundary conditions 2 in the previous case, so these constants are determined from the
system (22), (23).

Boundary conditions 3.

On the surface of the antidot 2 6,=n/2 for a =0, z=0; ¢p.=¢y on the interval

d/?2
[ 0 ) and 0, = 1/2 on the same interval in the point z = 0.

After substituting these boundary conditions into the solution (2), (27), we can see
that despite of the different type of the antiferromagnet and the different form (27) of the
distribution functions, constants of this distribution are determined by the similar to the
previous case system (24), (25), (26).
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6. PERIODIC ANTIDOT SYSTEM IN AN ISOTROPIC ANTIFERROMAGNET

Let us select the functions P and Q in the following form:

P=n, m{'r;—r‘”'}q
i 0 .
0= an +C,

1)

Such distribution corresponds, in particular, to a system of antidots with the centers
{ro;} in a film composed of an isotropic antiferromagnet.

We assume that the radii of the antidots are all equal and equal to R. Let us consider
the case when antidots in the antiferromagnet form a periodic structure with the period a
along the Ox axis and the period b along the Oy axis. Therefore, the relation

r, =r,+ae_p, +beyqi (32)

is satisfied, here p;, g; are integers. Because of the translational symmetry of the system all
the factors 7; in the distribution (31) are equal: n;= n for any i.

Note that because of the periodicity of the elliptic functions we cannot consider the
infinite sum of logarithms in the expression for the function P. However, we can consider
the number of the antidots limited, but still large enough so that we can use the
translational symmetry condition.

Let us use constant boundary conditions on the surface of some antidot: 8; and ¢, are

constant when ‘r —r%‘ = R for the antidot i,. Note that in order to use such boundary

condition we should consider a periodic system of antidots that are distant from each
other. Indeed, after substituting such boundary condition into the solution (31) we obtain

r—r,
the equation that contains a variable addend Zni ln(|l—0’| that depends on the point

i, 0
of the antidot surface. However, if the antidots are distant from one another, so that the
condition "'o,' —r%‘ >> R is fulfilled, this addend can be considered approximately

constant and we can write down the following relation on the surface of the antidot ij:

‘FOi — Py,

Pznlnl£+n21n +C2:nlnl£+52, (33)

0 i#i 0 0

‘rm — o,

here 52 = nZln

i#ig 0

+ C, ~ const . Note that these considerations are correct

for any antidot system with the antiferromagnetic vector distribution determined by (31),
not necessarily a periodic system.
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In a similar way, variable addend Zai (rl.o )n

1

enters boundary conditions for ¢;.

i+,

This addend can be neglected provided ZAa(1,10)<< > where Aa(l,zo) is the
i#ig

maximum difference between the angles o; of the antidot i, axis and an arbitrary point on

the antidot i, surface. In this case, due to the symmetry of the problem the sum

Z a,\r, )nl. is a multiple of 2x for any point on the surface of the antidot iy, therefore, for
i#i,

such antidots remoteness condition the following relation fulfils:
qu—"o,'o‘ :R)z na, +C;. (34)

Thus, we can impose arbitrary constant boundary conditions on the surface of each
antidot as long as these conditions are the same for all antidots. For example, we can
choose the boundary conditions as follows:

o n :R):% . (35)
=R)=a. +—=x

P qr_”mo

These boundary conditions correspond to a positive vortex distribution of the
antiferromagnetic vector in the xy plane on the surface of each antidot. In this case

C, = 5 + 7, and the constant C; can be determined from the condition

2
elc| m(?} = F| arcsin —“llzb,kl +4K (kN . (36)

0 1

Here we put C , =0 (for a complete determination of the distribution we need either to

impose another boundary condition in addition to (35) or set one of the constants C;, C 5)-

Note that the expression for 8; can be simplified considering the fact that if the case
of the antidots remoteness is fulfilled, it can approximately be reduced to the sum over the
four nearest antidots:

P=n21n(—|r_r°"|J+C2zn > m[w}ﬁz_
7 lo |x=x;|<a|y-y;|<b Zo
2 2
- n(m[ij ¥ m(ﬁj ¥ m(—“ @ +b B = 7
AR I

— X ~/ 2 2 ~
_, z 1n(|r ¥y, |J _ h{i] _ IH(EJ —In a—_{—b +C,
‘x—x,‘Sa,‘y—yi‘Sb lo ZO lO ZO
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In particular, for C, =0 the required distribution can be written

b.ctg(eLj:a’n cn ‘C,‘ z ln(r_r()[ J—ln(aj—ln[bJ—
2 |x=x;|<a.|y-y;|<b IO 10 10

_ln Ia2+b2 k (38)
I, o

@, = ”Z a; + % alf/4
with the constant C; determined from the condition (36).
Note that the distribution we obtained is correct only far from the boundaries of the

antidot system, so the approximation of the translational symmetry can be applied.

CONCLUSIONS

Thus, we wrote down a solution of the Landau-Lifshitz equation for an antidot
system in a film composed of an uniaxial or anisotropic two-sublattice antiferromagnet.
Using this solution, we have found an antiferromagnetic vector configuration for a
periodic remote antidot system in an isotropic antiferromagnet and for an antidot couple
(in general, not a remote couple) in an isotropic antiferromagnet, in an antiferromagnet
with uniaxial anisotropy of the "easy plane" type and in an antiferromagnet with uniaxial
anisotropy of the "easy axis" type for three different variants of boundary conditions. We
have shown that for an antidot system in a film composed of an uniaxial or isotropic two-
sublattice antiferromagnet, constant boundary conditions on a surface of some (arbitrary)
antidot is, in general, impossible, however, such boundary conditions are possible, for
example, for a remote antidot system in an isotropic antiferromagnet.
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Iopobeus 0. 1. Po3nmoain BexkTopa aHTH(depoMarHeTusMy /sl NEPiOIMYHOI CHCTEMM BiIajieHUX
KPYT'OBHX AHTHTOYOK Yy i30TPONMHOMY AHTH()ePOMATHETHKY Ta HapH KpPYrOBHX AHTHTOYOK Y
i3oTponHoMy ado oxHoBicHOMY aHTU(depomarHeTuky / 1O. L. 'opoGeus, O. 1O. I'opobens, B. B. Ky.im //
Bueni 3amuckn Taspilickkoro HarioHansHOro yHiBepcutery imeHi B. M. Bepmancekoro. Cepis : ®i3uko-
MatemaTnyHi Haykd. — 2013, — T. 26 (65), Ne 2. — C. 38-52.

PoGoTa mpucBsSUeHAa TEOPETHYHOMY MOCITIIDKEHHIO PO3MOIUTY BEKTOpa aHTH(epoMarHeTH3My y IUIBII 3
130TPOITHOTO Ta OJHOBICHOTO aHTH(EPOMArHETHKIB P HAsIBHOCTI CUCTEMH KPYTOBHX aHTUTOYOK. OTpUMaHO
po3B’s30k piBHsHHS Jlannay-Jlidpmuna s BekTopa aHTH(epoMarHeTH3My y Takiii cuctemi aHTHTOYOK. J[ist
NEepiOJNYHOI CHCTEMH BiJNaleHHX AHTUTOYOK Yy 130TPONHOMY aHTH(EPOMAarHETHKY, a TaKOX U Hapu
AQHTUTOYOK  (B3araji, HE BIJUAIEHHX) Y 130TPONHOMY, JIETKOBICHOMY Ta  JIETKOIUIOIIMHHOMY
aHTH(EPOMArHEeTUKY OTPHUMAHO PO3IO/IiI BEKTOpa aHTH(EPOMarHeTu3My 3a Pi3HUX IPaHHYHUX YMOB.
Knrouoei cnoséa: aHTH(EpPOMAarHETHK, MarHiTHa TOHKA IUTIBKA, MarHiTHa aHTHTOYKA, BEKTOP
aHTH(EepOMarHeTH3My.

Topoden 1O. U. Pacmpenesienne BeKTOpa aHTH(EPpPOMATHETH3MA /ISl TNEPHOIHYECKON CHCTEMBI
YAaJIeHHBIX KPYTOBbIX AHTHTOYOK B H30TPONHOM aHTH(eppOMarHeTuKe M Napbl KPYroBbIX AaHTHTOYOK
B U30TPONHOI1 nu ofHoocHOM aHTH(eppoMarHetruke / 0. . I'opoben, O. 10. I'opoden, B. B. Ky //
VYuensle 3anucku TaBpUdyecKoro HallMOHANBHOTO YHUBepcuTeTa numenu B. U. Bepraackoro. Cepus : dusuko-
MareMarndeckue Hayku. —2013. — T. 26 (65), Ne 2. — C. 38-52.

Pabora mocBsimeHa TEOPETHUECKOMY HCCIEAOBAHHMIO pACIIpeeNieHns] BeKTopa aHTU(eppOMarHeTnsmMa B
TUICHKE U3 M30TPOITHOTO M OJHOOCHOTO aHTH()EepPOMarHeTHKOB IIPH HAJTHIUH CHCTEMBI KPYTOBBIX aHTHTOYEK.
Iomyueno pemenne ypasuenust Jlannay-JIlupmmna juist Bektopa aHTH(eppoMarHeTH3Ma B TaKOH cHCTEMe
aHTUTOYeK. [l MeproAnNYeckoll CHCTEMBbI yJaJeHHBIX aHTUTOYEK B M30TPOIHOM aHTH(eppOMarHeTHke, a
TaKoKe JUIS Taphl aHTUTOYEK (BOOOIIE, HE YJAICHHBIX) B W30TPOIHOM, JISTKOOCHOM H JIETKOINIOCKOCTHOM
aHTH(EeppOMarHeTUKe TMOJYyYeHO paclpe]esieHHe BeKTopa aHTH(EeppOMarHeTn3Ma IpU  PasIddHbIX
I'PaHUYHBIX YCJIOBHUAX.

Kniouesvle cnosa: anTu(eppoOMarHeTWK, MAarHUTHAs TOHKas IUIEHKA, MarHUTHas AaHTHTOYKA, BEKTOP
aHTH(EeppPOMarHeTU3MA.
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