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SCALAR FIELD POTENTIAL DISTRIBUTION FOR TWO A “THICK” NULL
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The general form of the scalar field potential distribution for two a “thick” null string moving along the axis-Z
and completely lying in a plane orthogonal to this axis at every time moment is proposed. The conditions,
under which a contraction of the field to a one-dimensional object results asymptotic coincidence of
components of the energy-momentum tensor in the limit of compression components energy-momentum
tensor of a scalar field for a system of two noninteracting null strings moving on the same trajectories are
found.
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INTRODUCTION

String theories show the steady progress during several recent decades. In spite of
problems inevitable for any developing theory, they arouse admiration both due to the
results already obtained and their great possibilities in the future. On the one hand, the
interest in cosmic strings and other topological solutions is initiated by the role possibly
played by topological defects in the process of evolution of the Universe (string
mechanisms of generation of primary inhomogeneities of the matter density in the early
Universe or ideas of the topological inflation). On the other hand, it is due to the physical
properties of these objects significantly differing from those of common matter.

Besides studying of string theory allows us to understand the deepest moments of the
birth of the Universe in order to understand why it occurred, and what lies ahead of her?
But it is impossible to imagine studying the evolution of the Universe without studying the
properties of its components. That's why this article is a studying of null strings, which are
an integral part of both the string theory and the universe in general.

Objective of article:

e Construct the general view of distribution of potential scalar field for a system
consisting of two "thick" null string moving without interaction along the axis in
the same direction.

e Find conditions on scalar field potential at which, within the limit of the
compression component of the energy-momentum tensor of the scalar field
asymptotically coincide with the components of the energy-momentum tensor for
a system of two null strings moving on the same trajectory.
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The components of the energy-momentum tensor for an isolated null strings have the
following form:

T |-g = yjdrdaxjxﬁé"‘ (xl —x' (z‘,a)), (1)

where the indicesm, n,l take the values 0,1,2,3, functions x” = x" (z', O') determine the
trajectory of a null string, 7 and o are the parameters on the light surface of the null

, &,, 18 the metric tensor of the environment, and

strings x” =ox" /07, g=|g,,
¥ =const .
In the cylindrical system of coordinates: x° =t, x' = £, x’=0 , X = z, the

function x” (T,G), that determine the trajectory of the two closed string with constant

(time-invariant) radius R , moving along in the negative direction the axis z completely
lying in a plane orthogonal to this axis at every time moment have the following form:

t=1, p=R=const., 0=0, z=a—r, @)
t:T, ,OZRICOI/ISL, 0:(7, z=—a—1, (3)

where the positive constanta determines the distance, to the variable z , between the two
null strings (equal 2a).
For trajectories (2), (3), all directions on the hypersurfaces z = const are equivalent;

therefore, the metric functions g, =g, (¢ p,z), using the invariance of the quadratic

form with respect to the inversion of 8 to —6 we obtain gpr = g1 = g3 =0. One can

also see that the space-time quadratic form must be invariant with respect to the
simultaneous inversion ¢t — —¢, z —> —z. Hence,

gmn(t’pﬂz):gmn(_t7p3_z)5 (4)
which yields
8n =8 =0. ®))

Finally, using the free choice of the systems of coordinates in the general relativity
theory, we partially fix it by the requirement

23 =0. (6)
Thus, the quadratic form for the problem to be solved can be presented as
ds? = &2 (dt)? — A(d p)? — B(d6)? —*H (d)2, )
where v, 1, A, B depend on the variables ¢, p, z .

The components of the energy-momentum tensor for a system of two non-interacting
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null strings moving along the trajectories of (2) and (3) have the following form:
Tm}’l — 7‘1'7'171 +];mn , (8)

where 7" and 7, components of energy-momentum tensor for an isolated null string

moving along a path (2) and (3) respectively. For massless components of the energy-
momentum must satisfy the equation

7 =0. 9)
Hence, to (1), (2), (3), (7), (8), Eq. (9) takes the form:

T +T3 = 2—7{ev-ﬂ —e* " HS(q+a)+5(qg-a}d(p-R)=0, (10)

J4B

whence
V=0, (11)

The non-zero components of the energy-momentum tensor (1), to (1) — (3), (7), (11),
are as follows:

Ty =T, =1y =7m5(p—R)(5(q+a)+5(q—a)) (12)

Analyzing the system of Einstein equations and using conditions for (7), (11), (12)
the dependence of functions of the quadratic form (7) can be redefined as

A=A(q,p), B=B(g,p), v=v(g.p), (13)

where g =t+z.
In this case, the Einstein system itself is reduced to the equations

A B 1((4Y (B,Y 4, B
LA ) e o

2
> B 1(B B, A 14, B
v +2(v +22 | Ly | 22— 22— (15
7 (’p) B 2[3} ’p[B AJ2AB (1)
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B

B 4 1B, (4
P 9y _y —4 4 —— | L4 2 =0. 18
B ar ’pLA j 2 B (A J (18)

Supplement the system (14) - (18) the motion of a null string in the pseudo-
Riemannian space

v, +3(v )— Ajzo (17)

xo, +I7 x0x] =0, (19)
gmn m ” O gmn :0’ (2’0)

where qu are the Christoffel symbols. It can be shown on that the trajectory (2), (3),

equation of motion (19), (20) are performed identically, i.e. the trajectory of (2), (3) are
actually realized and do not change the gravitational field itself null strings.

Eq. (12) implies that, beyond the two strings, i.e. at g # *a, p # R, all components
of its energy-momentum tensor are equal to zero, while the non-zero ones (tending to
infinity) appear directly at the string, this allows one to investigate the system of Einstein
equations (14) - (18) in two directions:

1. By restricting oneself to the analysis of "external" problem in the region

q #*a, p+# R,where the components of the energy-momentum tensor (right-
hand sides of the Einstein equations (14) - (18)) are equal to zero.

2. By considering the components of the energy-momentum tensor of a string as a

limit of some "thick" distribution and analyzing the Einstein equations for this
"thick" distribution.

Can be shown, the analysis of the "external" problem results in a large number of
vacuum solutions of Einstein equations (14) - (18) that satisfy the problem symmetry,
however, the criteria allowing one to choose those describing the gravitational field of a
null string from this totality of solutions remain unclear. For example, it is easy to check
that the function

e’ =A=1, B=p’, (21)

defining the Minkowski space-time, or function

=(8@), B=(B@)p), (22)

c=const., [(q) arbitrary function, there are external solutions (i.e. in the region
q # *a, p# R) of Einstein equations (14) - (18).
When trying to consider the components of the tensor (12) of the string as a limit of

some “thick” distribution (simply replacing the delta functions in the tensor (12) by the
corresponding delta-function sequences), some errors can arise due to the indeterminacy
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of considering the possible appearance of terms (multipliers) tending to zero (constant)
under the contraction of this"thick" distribution into a one-dimensional object. That is why
it is more suitable to start from some "well- determined" "thick" distribution, such as a
real massless scalar field (as we consider a scalar null object) and then to contract it to a
string of the required configuration provided that the components of the tensor (12) of the
scalar field asymptotically coincide with those of the components of the tensor (12).

1. SYSTEM OF EINSTEIN EQUATIONS FOR THE "THICK" PROBLEM

The components of the energy-momentum tensor for a real massles scalar field have
the form:

1
T = - L, 23
op =%a? 8" 2%ap )

where L = gwﬂ”(o P Py 8(p/ x% | ¢ is the scalar field potential, and this

indices a, 5, w, A take on the values 0,1,2,3.

To provide the self-consistency of the Einstein equations constructed for (14) - (18)
for the tensor (23), we demand that:

Taﬂ =Taﬂ(q,p)—>¢=¢(q,p)- (24)

System Einstein equation for (7), (11) (13) (24) (24) can be represented as follows
2 2

1 A B A B 1 A B 2
L /AN /A IV AN U & B2 B B :Z((p),
21 A4 B 4| A B 4 A B »q
(25)
2
2 B B
2v +2(v j + PP e +
> PP > P B 2| B
B A B
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2 Ap Py 2
v +3(v j —v 2 =——(§0 j , (28)
> PP > P P A 2 P
qup 1 Aq Bq pr Aq Bq
——=—v  +—V = [+ == 4+ = |= . (29
28 Vap el A T B Ta B A TR T P

Let us consider system (25) - (29) for the distribution of the scalar field already
concentrated inside a “thin” ring, with the variables ¢ and p taking values in the

interval:
qe (—a—Aq,—a+Aq)u(a—Aq,a+Aq), pPE (R—Ap, R+Ap), (30)
where Aq and Ap are small positive constants, determine the "thickness" of the rings,
Ag <<1, Ap<<1, 31
with a further contraction of this "thin" rings into one-dimensional objects (null string)
Ag—>0, Ap =0, (32)

the space, where two such "thick" null strings moves and for which the variables g and
o ake on values in the interval

g €(—0,+0), pe [0, +0), (33)

can be conditionally divided into three regions:
- region I, for which

qe< (—oo,—a—Aq)u(—a+Aq,a—Aq)u(a+Aq,+oo),p € [0,+oo),
(34)
- region II, for which
ge(—a—Aq,—a+Aq)I(a—Ag,a+Aq), pe< [0, R—Ap)u(RJrAp, +oo)
(35)
- region III, for which
qgel-a—Aq,—a+Aq)U(a—Aq,a+Aq], pe [R—Ap, R+Ap], (36)

Since the contraction of the scalar field into a string mast result in the asymptotic
coincidence of system (24) — (28) with the system for a closed null string (14) — (18) we
obtain for the regions I, 11

— 0, —0, — 0, 37
Q (P’p (/’,q (37)
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for the region III, in the general case,

@ @
o a0 “q)
L _, L _, LI _

o Ty Gy
11 @ @
P 41

where @; ; are values of the scalar field potential in the regions I, II, ¢;; are values of

(38)

the scalar field potential in the region III (inside the “thin” ring), equality is realized on the
boundary, i.e. at

qgel-a—Agq,—a+Aq)U(a—Aq,a+Aq], p—> REAp, (39)
pe[R-Ap, R+Ap], g >FatAq. (40)

Comparing the system of Einstein equations for a closed null strings (14) - (18) t with
system (24) - (28) we may conclude that, under the contraction of the scalar field into a

string of the required configuration, i.e., at Ag — 0, Ap —0

2 2
—0,
((o,p) (w,q)
q

In the region I, for any fixed value of the variable
q=q, € (—oo, —a —Aq) U(—a+Aq,a—Aq) u(a +Aq, + oo) and for all values of the

-0, (4D

— %, ((/’ o

g ’p)‘ T
q->Fa,p>R —>Fa,p>R g>¥a.p R

variable p € [O, +OO) , the potential of the scalar field:

(P(qup) _)Oa (42)

according to (37), the scalar field potential in region I at any fixed value of
q=q, €(—a—Aq,—a+Aq)U(a—Aq,a+Aq) (region II and III), in the case where the

variable p € [0, R— Ap) U (R +Ap, + oo) (region IT), must be performed:
¢(q09p) _)Oa (43)
whereas, for p (R —-Ap, R+ Ap) (region III):

(p(qO:vp)II] >1

(44)
?(do> P)
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2. SCALAR FIELD POTENTIAL DISTRIBUTION FOR A «THICK» NULL STRING

For the conditions (42) - (44) it is suitable to present the scalar field potential

distribution in the form:

1
,p)=1 , 45
#a-p) n(a(qw(q)f(p)j @

where the function (g) and A(q) are symmetric with respect to the inversion of ¢ on

a(q) = a(=q), Aq)=A=q), (46)
the function a(q) + A(q) f () is bounded:
0<a(g)+Mg)f(p) <1, (47)

and the scalar field potential specified by (45) in accordance with (46) can assume values
from

@ — 0,under a(q)+A(q) f(p) —>1, (48)
to
@ — oo,under a(q)+ A(q) f(p) > 0. (49)
In region I, in accordance with (42),(47)
a(q) —>1, Aq)—0, (50)

According to (43) the potential of the scalar field in region II tends to zero, whereas
in ge(—a—Agq,—a+Aq)(a—Aq,a+Aq) and any fixed value of the variable

pP=p, € [O, R— Ap) U (R +Ap, + oo) , must be performed
a(q)+Mq) f(py) = 1. 1)
In region III, for the same values g € (—a—Ag,—a+Aq)(a—Aq,a+Aq) and at
p=p, €(R—Ap, R+Ap)
0<al(g)+Aq)f(p) <l (52)
Egs. (50) and (51) it follows that for all pe[0, R—Ap)U(R+Ap, +) the

values of the function f() tends to constant:

f(p)

= const. (53)

pe[0, R-Ap)U(R+Ap, +) - f;)
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Moreover f,, # 0, while the functions &(q) and A(q) are interconnected:

A(q) =fi<1—a<q)>. (54)

0

Substituting (54) into (52), we obtain for region I1I

M<1
I )

0

0<a(q)+(1-a(q)) (55)

this together with (49), (55) mean that, at ¢ — oo

a(q) >0, f(p)—>0. (56)

Thus, the function a(q) and f(p) in the expression for the scalar field potential
(45) are bounded and, for any ¢q € (—oo, + oo) and p e [0, +oo), take on values in the

intervals:

O<al(g)<l, 0<f(p)< fy, (57)

moreover, according to (50):

a(q) —1, (58)

ge(—o,—a—Aq)U(—a+Aq,a—Aq)I(a+Aq, +»)

in region I, whereas conditions (56) with regard for the symmetry of the function a(q)
(equality (46)) yield:

lim a(g) > 0. (59)
g—>*ta

The distribution for the function f(p) at pe [0, R - Ap) ) (R +Ap, + oo) is
determined by (53), according to (56)

fp)| . —0. (60)

pP—R

It can be shown that in region III, atqg — *a, p — R, with (59), (60), the function

@ and @  we obtain:

LTI (61)

Q s ) >
T alg) T f(p)
according to (41), at Ag >0, Ao —> 0
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%y

a(q)

5

f(p)

As an example, the functions a(q) and f (), satisfying the found conditions can be

fp a,q x f,/?

a(q) f(p)

—0. (62)

q—*a, p—>R

b

q—ta PR

chosen as follows:

1 1
AD= exp{_[el TE@r) et Ga—qr )} (©

—1
= —ul1—
r(p) =1, exp[ u[ exp[ c(p—R)) DJ (64)

where the constants &,&, and ¢ determine the size ("thickness") of the rings with the

scalar field concentrated inside with respect to the variables g and p, respectively, and
positive constants & =&,and g provide the conditions (59), (60), (62), with
q—*a, p >R, Ag >0, Ap — 0, namely, at

Ag <<, g <<1, g, <<1,

(65)
Ap <<1, u>>1,

With a further contraction into a one-dimensional object (null string), i.e., at
Ag—0, Ap—>0

g —0, & >0, u—>ow. (66)

On Fig. 1 presents the distribution of the function a(q)+ (1— a(q))( f(p)/ 1, ), in

the region a =35, g € [—10,10] ,PE [0,10] , for the functions a(q), f(p), specified by
Egs. (63), (64). One can see from these figures that, with increasing values of the
constants &;,&,,6 the region of the non-unity function a(q)+(l—a(q))( f(p)/ fo)

(i.e., the region, where the scalar field is concentrated, and the scalar field potential isn’t
tend to zero) contracts, which corresponds to a decrease of the “thickness” of the rings
with the scalar field concentrated inside.

On Fig. 2, show the distribution of the scalar field potential specified by (45), (63),

(64) with respect to the variable p(pe [0,10]) at
R=5,a=5 & =¢ =1, u=4, £=¢,=001 and ¢=5.01 with the following
constants ¢: a)g =0.5,6)¢ =0.7, ¢) ¢ =1. Here, black color shows an area in which

@ — 0. One can see that, with increasing constant ¢, the region of the non-zero scalar
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field potential contracts, which corresponds to a decrease of the “thickness” of the rings
with the scalar field concentrated inside with respect to p .

On Fig. 3 one can see the distribution of the scalar field potential specified by (45) on
the surface @=const., q €[-10,10]. It is obvious that an increase of the constantsg,

&,&, results in the contraction of the region with the non-zero scalar field potential. In
other words, the “thickness” of the rings, where the scalar field is concentrated, decreases.

(a) (b)
Fig. 1. Distribution of the function «a(gq)+(1— a(q))( f! 1, ) , Wwhere
q€[-10,10], p€[0,10]at R=5, & = &,=0.01: a) u=& =& =2,b) u=¢& =&, =4.

a) b) c)

Fig. 2. Scalar field potential distribution specified by (45), (63), (64) with respect to
the variable p(p € [O,IO]) at R=5,a=5 ¢ =56 =1, u=4, §=5=0.01 and
q=5.01 with the following constants ¢: a)g=0.5, 6)¢=0.7, ¢) ¢=1I.
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a) b) ©)

Fig. 3. Scalar field potential distribution specified by (45) on the surface €= const.,
q €[-10,10] p €[0,10], which are correspond to the selection of constant values that:

a) & :6‘2:0,01; 51 :(:2:0’5; ﬂ:l,gzo’s, RZS, a=5
b)& =6,=0,01; & =& =0,7; u=1;{=0,5 R=5,
0)g =5=0,0% §=¢& =2 p=1;{=2 R=5.

CONCLUSIONS

In this article, we have received, general view of distribution of potential scalar field
for a system consisting of two "thick" null string moving without interaction along the
axis in the same direction. Conditions on scalar field potential at which, within the limit
of the compression component of the energy-momentum tensor of the scalar field
asymptotically coincide with the components of the energy-momentum tensor for a
system of two null strings moving on the same trajectory are found. The example of the
potential distribution of a scalar field, corresponds to the conditions obtained.

References
A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994).
A. D. Linde, Physics of Particles and Cosmology (Nauka, Moscow, 1990) [in Russian].
P. S. E. Peebles, Ppinciples of Physical Cosmology (Prinston University Press, 1994).
S. N. Roshchupkin, A. A. Zheltukhin, Class. Quantum. Grav. 12,2519 (1995).
O. P. Lelyakov, Ukr. J. Phys. 56, No. 3,296 (2011).
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Jleasikos O. I1. Po3moaisl noreHumiany cKajJdsipHOro IoJs JJsl CHCTEMH 3 JBOX 3aMKHYTHX HYJIb-CTPYH
HE3MIHHOr0 3 4acoM paniyca, mo pyxawtbcs y3ao0Bx oci z / O. IL. JleaskoB, A. O. Kopaabos // Bueni
3anucku TaBpilichKOTO HalliOHANBFHOTO YHiBepcuTeTy iMeHi B. 1. Bepraacekoro. Cepis : dizuko-MaTeMaTn4Hi
Hayku. — 2014 — T. 27 (66), Ne 2. — C. 37-49.

Y po0oTi 3amponoHOBAaHO 3arajbHUI BHIVIAL PO3MOALTY MOTEHIIANY NiHCHOTO 0e3MaccOBOTO CKAJSPHOTO
TIOJIS JUTSL «PO3MAa3aHoi» HyJIb-CTPYHH, IO PaialbHO po3muproeThes B miommni z = 0. 3naiineno ymoBu Ha
MOTEHIIIAN CKaJIAPHOTO MO, MPU AKX, B MEXI CTUCHEHHS B OJHOBHUMIPHHN 00'€KT, KOMIIOHEHTH TE€H30pa
EHEPTii-IMITyJIbCY CKAJSIPHOTO MOJS aCHMIITOTHYHO 30iraloThCs 3 KOMIIOHEHTAMH TEH30pa CHEPTii-IMITyIIbCY
3aMKHYTOI HYJIb-CTPYHH, IO PYXA€ETHCS 10 Til K€ TPAEKTOPIi.

Knrowuosi cnosa: Hynb-cTpyHa, CKasipHE M0JIE, KOCMOJIOTISI.
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Jleasikos A. I1. Pacnpenenenne noreHnuana cKaJsipHOr0 MoJs JJIsl CHCTEMBbI U3 IBYX 3AMKHYTBIX HYJ/Ib-
CTPYH HEHM3MEHHOr0 ¢O BpeMeHeM pajauyca, ABHKymmuxcs Baoab ocu z / A. Il Jlexsikos,
A. O. KoBauieB // Y4ensle 3anucku TaBpu4eckoro HallMOHAJILHOTO YHUBepcuTeTa uMeHu B. 1. Bepnanckoro.
Cepust : dusnxo-mareMarnaeckne Hayku. — 2014. — T. 27 (66), Ne 2. — C. 37-49.

B pabore npemroxeH oOummii BUA pacnperneneHus ITOTEHIMAala BEIIECTBEHHOTO 0e3MacCOBOTO CKAISIPHOTO
TIOJISL JUTS «Pa3Ma3aHHoONy» HyJb-CTPYHBI paualbHO paciupsitomeiics B wiockoctu z = (). Halinensl ycnosus
Ha NOTEHIHAJ CKAIIPHOTO IOJ, NMPU KOTOPBIX, B MpeJesie CXKaThs B OJHOMEPHBIH OOBEKT, KOMIOHEHTHI
TEH30pa JHEPIUU-UMIIYJIbCA CKASIPHOTO IOJNA aCHUMOTOTHYECKH COBNAJAIOT C KOMIIOHEHTAaMHM TEH30pa
SHEPrUuM-UMITyJIbCA 3aMKHYTO! HYIb-CTPYHBI JBHXKYIIEHCS IO TOU K€ TPACKTOPHH.

Knrouesvie cnosa: Hynb-CTpyHa, CKalsIPHOE M0JI€, KOCMOJIOTHS.
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