серия «Математика. Механика. Информатика и кибернетика» Том 20(59) № 2 (2007), с. 42–52.

А. И. Криворучко

ОБ АЛГЕБРАИЧЕСКИХ ПОВЕРХНОСТЯХ С АФФИННЫМИ ОСЯМИ СИММЕТРИИ

Получена аффинная классификация пар аффинных отражений относительно аффинных прямых, а также групп, порожденных двумя отражениями относительно прямых; вычислены все полуинварианты этих групп.

Введение. Пусть Φ – алгебраическая поверхность, заданная в n-мерном аффинном пространстве уравнением F=0, где F – неприводимый многочлен. Если Φ имеет бесконечное множество гиперплоскостей симметрии, то F – инвариант соответствующей бесконечной группы, порожденной отражениями относительно гиперплоскостей. Поэтому построение канонических уравнений алгебраических поверхностей с бесконечными множествами гиперплоскостей симметрии сводится к вычислению базисных инвариантов бесконечных групп отражений, чему посвящен целый ряд работ (см., например, [1]-[3]). В то же время при изучении алгебраических поверхностей с бесконечными множествами осей симметрии приходится учитывать следующее: если поверхность Φ имеет бесконечное множество осей симметрии, то F, являясь полуинвариантом соответствующей бесконечной группы, порожденной отражениями относительно прямых, может не быть инвариантом какой-либо бесконечной группы отражений. Пример такой поверхности, как следует из результатов работ [4] и [5], – линейчатая поверхность Кэли, которая задается в аффинной системе координат (x_1, x_2, x_3) трехмерного аффинного пространства уравнением $x_1 + x_2 x_3 + x_3^3 = 0$. Поэтому найденные в [5] инварианты нецентроаффинных групп, порожденных отражениями относительно прямых и действующих на нецилиндрических алгебраических поверхностях, не позволяют прямо получить уравнение любой нецилиндрической алгебраической поверхности с бесконечным множеством осей симметрии, имеющих пустое пересечение. В связи с этим возникает следующая задача: Вычислить полуинварианты групп, порожденных аффинными отражениями относительно прямых.

Ниже эта задача решается для бесконечных групп, порожденных двумя отражениями относительно прямых.

Цель работы — построение аффинной классификации пар отражений и групп, порождаемых двумя отражениями относительно прямых, а также вычисление полуинвариантов таких групп.

Основные результаты работы: Получена аффинная классификация пар отражений относительно прямых и групп, порожденных двумя отражениями относительно прямых; вычислены полуинварианты бесконечных групп, порожденных двумя отражениями относительно прямых.

 1^{o} . Инварианты некоторых однопараметрических групп. Пусть V – линейное вещественное n-мерное пространство,

$$(e_1,\ldots,e_n) \tag{1}$$

– некоторый заданный в этом пространстве базис с соответствующей системой координатных функций (x_1, \ldots, x_n) (т.е. двойственным базисом в пространстве V^*).

Если $A \subseteq V$, то $\langle A \rangle$ – линейная оболочка A.

Если X – множество с заданной на нем системой координат (x,\ldots,z) , то равенство $T=\{x'=f(x,\ldots,z),\ldots,z'=h(x,\ldots,z)\}$ означает, что $T:X\to X$ – отображение, имеющее координатное представление $x'=f(x,\ldots,z),\ldots,z'=h(x,\ldots,z);$ при этом если значение y' некоторой координаты y не определяется в координатном представлении T, то считается, что y'=y.

Пусть Λ – аффинная прямая, P – гиперплоскость, лежащие в V, и $\Lambda \not\parallel P$; тогда (Λ, P) обозначает отражение относительно Λ в направлении P. Если $c \in \Lambda$, a – направляющий вектор $\Lambda, \xi \in V^*, P = \ker \xi$, то для любого вектора $v \in V$

$$(\Lambda, P)(v) = -v + 2(\xi(a))^{-1} \xi(v - c) a + 2c.$$

Далее \mathbb{R} – поле вещественных чисел, $\mathbf{K} = \mathbb{R}[x_1, \dots, x_n]$; \mathbf{K}^G – алгебра полиномиальных инвариантов, а $\mathbf{K}(G)$ – множество всех полуинвариантов группы G.

Для любого подмножества $I\cup\{x,\ldots,z\}$ кольца ${\bf K}$ пусть $I\,\langle x,\ldots,z\rangle$ – множество всех многочленов с коэффициентами, принадлежащими I, "переменными" x,\ldots,z и одночленами, имеющими только четные степени относительно "переменных" $x,\ldots,z;\quad I\lfloor x,\ldots,z\rfloor$ – множество всех многочленов с коэффициентами, принадлежащими I, "переменными" x,\ldots,z и одночленами, имеющими только нечетные степени относительно "переменных" x,\ldots,z .

Пусть $F = f(x, ..., z) \in I[x, ..., z]$. Из равенства f(-x, ..., -z) = F следует, что $F \in I \langle x, ..., z \rangle$, а если f(-x, ..., -z) = -F, то $F \in I[x, ..., z]$.

В системе координат (1) для любого $t \in \mathbb{R}$ положим

$$A^{t} = \{x'_{1} = x_{1} + t x_{2} + t^{2} x_{3} / 2 + t^{3} / 6, \ x'_{2} = x_{2} + t x_{3} + t^{2} / 2, \ x'_{3} = x_{3} + t\},$$

$$B^{t} = \{x'_{1} = x_{1} + t x_{2}, \ x'_{3} = x_{3} + t\}, \quad P^{t} = \{x'_{1} = x_{1} + t x_{2} + t^{2} / 2, \ x'_{2} = x_{2} + t\},$$

$$N^{t} = \{x'_{1} = x_{1} + t x_{2} + t^{2} x_{3} / 2, \ x'_{2} = x_{2} + t x_{3}, \ x'_{4} = x_{4} + t\}, \quad S^{t} = \{x'_{1} = x_{1} + t\}.$$

Если $t \neq 0$, то A^t – параболический сдвиг с переносом, B^t – винтовой сдвиг, S^t – перенос, P^t – параболический поворот, N^t – винтовой параболический сдвиг.

 $\mathcal{A} = (A^t : t \in \mathbb{R}), \ \mathcal{B} = (B^t : t \in \mathbb{R}), \ \mathcal{P} = (P^t : t \in \mathbb{R}), \ \mathcal{N} = (N^t : t \in \mathbb{R}), \ \mathcal{S} = (S^t : t \in \mathbb{R})$ – однопараметрические группы. Найдем их инварианты.

Пусть $F = f(x_1, \ldots, x_n) \in \mathbf{K}$.

Если $F \in \mathbf{K}^{\mathcal{A}}$, то применяя к F преобразование A^t , получим

$$F = f(x_1 + tx_2 + t^2x_3/2 + t^3/6, x_2 + tx_3 + t^2/2, x_3 + t, x_4, \dots, x_n).$$

Полагая $t=-x_3$, получим $F=f(x_1-x_2x_3+x_3^3/3,\,x_2-x_3^2/2,\,0,\,x_4,\ldots,\,x_n)$. Но $x_1-x_2x_3+x_3^3/3,\,2\,x_2-x_3^2,\,x_4,\ldots,\,x_n$ — инварианты группы \mathcal{A} . Следовательно,

$$\mathbf{K}^{\mathcal{A}} = \mathbb{R}[x_1 - x_2 x_3 + x_3^3 / 3, 2 x_2 - x_3^2, x_4, \dots, x_n]. \tag{2}$$

Аналогично показывается, что

$$\mathbf{K}^{\mathcal{B}} = \mathbb{R}[x_1 - x_2 x_3, x_2, x_4, \dots, x_n], \quad \mathbf{K}^{\mathcal{P}} = \mathbb{R}[2x_1 - x_2^2, x_3, \dots, x_n],$$

$$\mathbf{K}^{\mathcal{N}} = \mathbb{R}[x_1 - x_2 x_4 + x_3 x_4^2 / 2, x_2 - x_3 x_4, x_3, x_5, \dots, x_n], \quad \mathbf{K}^{\mathcal{S}} = \mathbb{R}[x_2, \dots, x_n].$$
(3)

 2^o . Группы, порожденные двумя отражениями. Пусть в пространстве V для каждого $i \in \{1;\ 2\}$ задано отражение $R_i = (\Lambda_i, P_i)$ относительно аффинной прямой Λ_i в направлении линейной гиперплоскости P_i ; L_i – линейная прямая, параллельная Λ_i ; $S = L_1 + L_2,\ Q = P_1 \cap P_2;\ T = R_2R_1,\ G$ – группа, порожденная R_1 и R_2 ; \bar{G} – замыкание группы G в топологии Зарисского группы Aff(V) всех аффинных преобразований пространства V; $F \in \mathbf{K}(G)$.

Очевидно, что $R_1^2 = R_2^2 = \mathrm{id}$, $TR_1 = R_1T^{-1} = R_2$. Поэтому

$$G = \{T^m : m \in \mathbb{Z}\} \cup \{T^m R_1 : m \in \mathbb{Z}\}.$$

Пусть χ_F – характер группы G, являющийся весом F (т.е. $F \cdot g^{-1} = \chi_F(g) F$ для каждого элемента g группы G). Тогда $\chi_F(G) \subseteq \{-1; 1\}$. При этом если G' – компонента единицы id_V группы G, то $\chi_F(G') = \{1\}$. Кроме того, $F \in \mathbf{K}(\bar{G})$, а F как полуинвариант группы \bar{G} имеет вес $\tilde{\chi}_F$, являющийся непрерывным продолжением веса χ_F , и $\tilde{\chi}_F(G) \subseteq \{-1; 1\}$.

Рассматривая все возможные случаи "взаимного расположения" $P_1, P_2, \Lambda_1, \Lambda_2$, построим канонический базис пары (R_1, R_2) , и в этом базисе найдем координатные представления элементов группы \bar{G} , а также полуинварианты группы G.

Не нарушая общности, далее считаем, что $\Lambda_1 = L_1$; при этом если $L_1 \cap \Lambda_2 \neq \emptyset$, то и $\Lambda_2 = L_2$, а если $P_1 \neq P_2$, $L_1 \cap \Lambda_2 = \emptyset$ и $V = S \oplus Q$, то $\vec{0} \in \Lambda_2 + Q$.

Отсюда следует, что $P_1 \cap \Lambda_2 \neq \emptyset$. Зафиксируем $c \in P_1 \cap \Lambda_2$. При этом если $Q \cap \Lambda_2 \neq \emptyset$, то считаем, что $c \in Q \cap \Lambda_2$.

1.
$$L_1 = L_2$$
, $P_1 = P_2$.

При построении канонического базиса (1) пары (R_1, R_2) полагаем, что $e_1 \in L_1$, (e_2, \ldots, e_n) — базис в P_1 , причем если $L_1 \neq \Lambda_2$, то $e_2 = 2c$.

В каноническом базисе $R_1 = \{x_i' = -x_i \ (i > 1)\}.$

1.1. $L_1 = \Lambda_2$.

В этом случае $R_1 = R_2$, $G = \{id, R_1\}$.

Пусть $F = f(x_1, \ldots, x_n)$. Тогда $f(x_1, -x_2, \ldots, -x_n) \in \{-F, F\}$ в силу R_1 -полуинвариантности F. Отсюда $\mathbf{K}^G = \mathbb{R}[x_1]\langle x_2, \ldots, x_n \rangle$, $\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1]|x_2, \ldots, x_n|$.

1.2. $L_1 \neq \Lambda_2$.

Теперь $e_2/2 \in \Lambda_2$ и $e_1 \parallel \Lambda_2$. Полагая $\mathcal{S} = (S^t : t \in \mathbb{R})$, где $S^t = \{x_2' = x_2 + t\}$, имеем: $T = S^1$, $\bar{G} = \mathcal{S} \cup (\mathcal{S} \cdot R_1)$. Но тогда $F \in \mathbf{K}^{\mathcal{S}}$, т.е. $F \in \mathbb{R}[x_1, x_3, \dots, x_n]$, и, как в случае $\mathbf{1.1}$, получаем: $\mathbf{K}^G = \mathbb{R}[x_1]\langle x_3, \dots, x_n \rangle$, $\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1][x_3, \dots, x_n]$.

2. $L_1 = L_2, P_1 \neq P_2$.

Построим в V канонический базис (1), последовательно выбирая ненулевые векторы e_1, \ldots, e_n так, чтобы выполнялись следующие условия:

 $e_1 \in L_1, \ e_2 \in P_1 \setminus Q, \ e_1 + 2 \, e_2 \in P_2; \ \text{если } n > 2, \text{ то } (e_3, \dots, e_n)$ – базис Q; при этом если $L_1 + Q \neq \Lambda_2 + Q$ (и тогда $c \notin Q$), то $e_2 = 2 \, c$, а если $L_1 + Q = \Lambda_2 + Q$, $L_1 \neq \Lambda_2$ (и тогда $n > 2, c \in Q \setminus \{\vec{0}\}$), то $e_3 = 2 \, c$.

2.1. $L_1 = \Lambda_2$.

Для любого вещественного t пусть $D^t = \{x_1' = x_1 + t x_2\}$. Тогда $\mathcal{D} = \{D^t : t \in \mathbb{R}\}$ – однопараметрическая группа сдвигов, $T = D^1$. Поэтому $\bar{G} = \mathcal{D} \cup (\mathcal{D} \cdot R_1)$.

Из \mathcal{D} -инвариантности F имеем:

$$F = f(x_2, \dots, x_n) \in \mathbb{R}[x_2, \dots, x_n]. \tag{4}$$

Теперь, как и в случае 1.1, получаем:

$$\mathbf{K}^G = \mathbb{R}\langle x_2, \dots, x_n \rangle, \quad \mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R} \lfloor x_2, \dots, x_n \rfloor.$$

2.2. $L_1 + Q \neq \Lambda_2 + Q$.

Определяя P^t и \mathcal{P} так же, как в п. 1^o , получаем: $T=P^1$. Отсюда $\bar{G}=\mathcal{P}\cup(\mathcal{P}\cdot R_1)$. Теперь из (3) имеем: $F=f(2x_1-x_2^2,\,x_3,\ldots,\,x_n)\in\mathbf{K}^{\mathcal{P}}$. Поэтому из R_1 -полуинвариантности F следует, что $f(2x_1-x_2^2,\,-x_3,\ldots,\,-x_n)\in\{-F,\,F\}$. Отсюда

$$\mathbf{K}^G = \mathbb{R}[2x_1 - x_2^2]\langle x_3, \dots, x_n \rangle, \quad \mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[2x_1 - x_2^2]|x_3, \dots, x_n|.$$

2.3.
$$L_1 + Q = \Lambda_2 + Q$$
, $L_1 \neq \Lambda_2$.

Определяя B^t и \mathcal{B} так же, как в п. 1^o , имеем: $T = B^1$, $\bar{G} = \mathcal{B} \cup (\mathcal{B} \cdot R_1)$. Теперь из (3) получаем:

$$F = f(x_1 - x_2 x_3, x_2, x_4, \dots, x_n) \in \mathbb{R}[x_1 - x_2 x_3, x_2, x_4, \dots, x_n].$$
 (5)

Отсюда $f(x_1 - x_2x_3, -x_2, -x_4, \dots, -x_n) \in \{-F, F\}$ в силу R_1 -полуинвариантности F, и $\mathbf{K}^G = \mathbb{R}[x_1 - x_2x_2]\langle x_2, x_4, \dots, x_n \rangle$, $\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1 - x_2x_3]|x_2, x_4, \dots, x_n|$.

3.
$$L_1 \neq L_2$$
, $P_1 = P_2$.

Построим в V канонический базис (1), последовательно выбирая ненулевые векторы e_1, \ldots, e_n так, чтобы выполнялись следующие условия:

$$e_1 \in P_1 \cap S$$
; $e_2 \in L_1$; $e_1 + 2 e_2 \in L_2$; если $n > 2$, то (e_1, e_3, \dots, e_n) – базис P_1 ; если $L_1 \cap \Lambda_2 = \emptyset$ (и тогда $n > 2$), то $e_3 = 2 c$.

3.1.
$$\Lambda_1 = L_1, \ \Lambda_2 = L_2.$$

Определяя D^t и \mathcal{D} так же, как случае **2.1**, получаем: $T = D^1$, $\bar{G} = \mathcal{D} \cup (\mathcal{D} \cdot R_1)$. Из \mathcal{D} -инвариантности F следует (4). Теперь, как в случае **1.1**, получаем:

$$\mathbf{K}^G = \mathbb{R}[x_2]\langle x_3, \dots, x_n \rangle; \quad \mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_2]|x_3, \dots, x_n|.$$

3.2.
$$L_1 \cap \Lambda_2 = \emptyset$$
.

Определяя B^t и $\mathcal B$ так же, как в п. 1^o , имеем: $T=B^1,\ \bar G=\mathcal B\cup (\mathcal B\cdot R_1).$

Теперь из \mathcal{B} -инвариантности F получаем (5). Поэтому из R_1 -полуинвариантности F следует, что $f(-x_1+x_2x_3, x_2, -x_4, \ldots, -x_n) \in \{-F, F\}$. Отсюда

$$\mathbf{K}^G = \mathbb{R}[x_2]\langle x_1 - x_2 x_3, x_4, \dots, x_n \rangle, \quad \mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_2][x_1 - x_2 x_3, x_4, \dots, x_n].$$

4.
$$L_1 \neq L_2, V = S \oplus Q$$
.

Пусть J – отражение относительно плоскости Q в направлении плоскости S.

Зафиксируем $\alpha \in \mathbb{R} \setminus \{0\}$. Построим в V базис (1), последовательно выбирая ненулевые векторы e_1, \ldots, e_n так, чтобы выполнялись следующие условия:

- 1) $e_1 \in P_1 \cap S$; $e_2 \in L_1$; при этом если $L_2 \subseteq P_1$, а $L_1 \nsubseteq P_2$, то $e_1 + 2 e_2 \in P_2$; если же $L_2 \nsubseteq P_1$, то $e_1 + \alpha e_2 \in L_2$;
 - 2) если n > 2, то (e_3, \ldots, e_n) базис Q; при этом если $L_1 \cap \Lambda_2 = \emptyset$, то $e_3 = 2c$.

Отсюда $R_1 = \{x_i' = -x_i \ (i \neq 2)\}, \ J = \{x_1' = -x_1, \ x_2' = -x_2\}.$

Если n > 2, то полагаем $S = \{S^t : t \in \mathbb{R}\}$, где $S^t = \{x_3' = x_3 + t\}$.

4.1.
$$L_1 \subset P_2, \ L_2 \subset P_1, \ \Lambda_2 = L_2.$$

В этом случае $T = R_2 R_1 = R_1 R_2 = J$, и поэтому $G = \{id, J, R_1, R_2\}$.

Возможны лишь следующие случаи.

а) F - T-инвариантный многочлен.

Значит, $F = g(x_1^2, x_2^2, x_1x_2, x_3, \dots, x_n) \in \mathbb{R}\langle x_1, x_2 \rangle [x_3, \dots, x_n]$; теперь из R_1 -получнвариантности F получаем: $g(x_1^2, x_2^2, -x_1x_2, -x_3, \dots, -x_n) \in \{-F, F\}$.

б) F – не T-инвариантный многочлен.

Меняя, если нужно, нумерацию x_1 и x_2 , можем считать, что $F-R_1$ -инвариантный, но не R_2 -инвариантный многочлен. Тогда

$$F = g(x_2, x_1^2, x_1 x_3, \dots, x_1 x_n, x_3^2, x_3 x_4, \dots, x_n^2) \in \mathbb{R}[x_2] \langle x_1, x_3, \dots, x_n \rangle$$

в силу R_1 -инвариантности F, и теперь в из T-полуинвариантности F следует, что $g(-x_2,\,x_1^2,\,-x_1x_3,\ldots,\,-x_1x_n,\,x_3^2,\,x_3x_4,\ldots,\,x_n^2)=-F.$

В результате получаем: $\mathbf{K}^G = \mathbb{R}[x_1^2, x_2^2] \langle x_1 x_2, x_3, \dots, x_n \rangle$,

$$\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1^2, x_2^2] [x_1 x_2, x_3, \dots, x_n] \cup \\ \cup \mathbb{R}[x_1^2] \langle x_3, \dots, x_n \rangle |x_2, x_1 x_3, \dots, x_1 x_n| \cup \mathbb{R}[x_2^2] \langle x_3, \dots, x_n \rangle |x_1, x_2 x_3, \dots, x_2 x_n|.$$

4.2. $L_1 \subset P_2, \ L_2 \subset P_1, \ L_1 \cap \Lambda_2 = \emptyset.$

В этом случае $P_2=\ker x_1,\ e_1\parallel\Lambda_2,\ e_3/2\in\Lambda_2.$ Отсюда $T=J\,S^1=S^1J.$ Поэтому $\bar G=\mathcal S\cdot\{\mathrm{id},\ R_1,\ J,\ R_1J\}.$

Следовательно, $\mathbf{K}^G \subseteq \mathbf{K}^S = \mathbb{R}[x_1, x_2, x_4, \dots, x_n]$. Теперь, как и в случае **4.1**, получаем: $\mathbf{K}^G = \mathbb{R}[x_1^2, x_2^2]\langle x_1 x_2, x_4, \dots, x_n \rangle$,

$$\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1^2, x_2^2] [x_1 x_2, x_4, \dots, x_n] \cup \\ \cup \mathbb{R}[x_1^2] \langle x_4, \dots, x_n \rangle [x_2, x_1 x_4, \dots, x_1 x_n] \cup \mathbb{R}[x_2^2] \langle x_4, \dots, x_n \rangle [x_1, x_2 x_4, \dots, x_2 x_n].$$

4.3. $L_1 \nsubseteq P_2, L_2 \subseteq P_1$.

В этом случае $e_1 \in L_2$, $P_2 = \ker(2x_1 - x_2)$.

4.3.1. $\Lambda_2 = L_2$.

Пусть D^t и \mathcal{D} в построенном базисе определяются так же, как и в случае **2.1**. Тогда $T = J D^1 = D^1 J$, $\bar{G} = \mathcal{D} \cdot \{ \text{id}, R_1, J, R_1 J \}$.

Из \mathcal{D} -инвариантности F получаем (4). Теперь, как и в случае **4.1**, имеем:

$$\mathbf{K}^G = \mathbb{R}[x_2^2]\langle x_3, \dots, x_n \rangle;$$

F-T-инвариантный многочлен, не принадлежащий \mathbf{K}^G , тогда и только тогда, когда $F \in \mathbb{R}[x_2^2]\lfloor x_3,\ldots,x_n \rfloor;$

 $F-R_1$ -инвариантный многочлен, не принадлежащий \mathbf{K}^G , тогда и только тогда, когда $F\in\mathbb{R}\lfloor x_2\rfloor\langle x_3,\dots,\,x_n\rangle.$

Допустим теперь, что $F - R_2$ -инвариантный многочлен, не принадлежащий \mathbf{K}^G . Тогда $f(x_2, -x_3, \dots, -x_n) = -F$ в силу (4) и R_1 -полуинвариантности F. Следовательно, $F \in \mathbb{R}[x_2][x_3, \dots, x_n]$. При этом $f(-x_2, x_3, \dots, x_n) = -F$, т.к. F полуинвариантен относительно T. Отсюда $F \in \mathbb{R}[x_2][x_3, \dots, x_n]$.

Значит,
$$\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_2^2][x_3, \dots, x_n] \cup \mathbb{R}[x_2]\langle x_3, \dots, x_n \rangle \cup \mathbb{R}[x_2][x_3, \dots, x_n].$$

4.3.2.
$$L_1 \cap \Lambda_2 = \emptyset$$
.

Определяя B^t и \mathcal{B} так же, как в п. 1^o , получаем: $T = B^1 J = J B^1$, и отсюда $\bar{G} = \mathcal{B} \cdot \{ \mathrm{id}, R_1, J, R_1 J \}$.

Из \mathcal{B} -инвариантности F имеем (5).

Рассмотрим теперь следующие случаи.

а) F инвариантен относительно J.

С учетом (5) получаем: $f(-x_1+x_2x_3, -x_2, x_4, \dots, x_n) = F$. Поэтому

$$F = g((x_1 - x_2 x_3)^2, (x_1 - x_2 x_3) x_2, x_2^2, x_4, \dots, x_n) \in \mathbb{R}[x_4, \dots, x_n] \langle x_1 - x_2 x_3, x_2 \rangle.$$

Теперь из R_1 -инвариантности F имеем:

$$g((x_1-x_2x_3)^2, -(x_1-x_2x_3)x_2, x_2^2, -x_4, \dots, -x_n) = F.$$

Если же F не инвариантен относительно R_1 , то

$$g((x_1 - x_2x_3)^2, -(x_1 - x_2x_3)x_2, x_2^2, -x_4, \dots, -x_n) = -F.$$

b) F не инвариантен относительно J.

В этом случае если F инвариантен относительно R_1 , то

$$f(-x_1 + x_2x_3, x_2, -x_4, \dots, -x_n) = F.$$

Отсюда

$$F = g(x_2, (x_1 - x_2 x_3)^2, (x_1 - x_2 x_3) x_4, \dots, (x_1 - x_2 x_3) x_n, x_4^2, x_4 x_5, \dots, x_n^2) \in \mathbb{R}[x_2] \langle x_1 - x_2 x_3, x_4, \dots, x_n \rangle,$$

и из полуинвариантности F относительно J имеем:

$$g(-x_2, (x_1 - x_2x_3)^2, -(x_1 - x_2x_3)x_4, \dots, -(x_1 - x_2x_3)x_n, x_4^2, x_4x_5, \dots, x_n^2) = -F.$$

Если же F не инвариантен относительно R_1 , то F инвариантен относительно R_1J . Но тогда $f(x_1-x_2x_3,-x_2,-x_4,\ldots,-x_n)=F$. Поэтому

$$F = g(x_1 - x_2 x_3, x_2^2, x_2 x_4, \dots, x_2 x_n^2, x_4^2, x_4 x_5, \dots, x_n^2) \in \mathbb{R}[x_1 - x_2 x_3, x_2, x_4, \dots, x_n] \langle x_2, x_4, \dots, x_n \rangle,$$

и $g(-x_1+x_2x_3, x_2^2, -x_2x_4, \dots, -x_2x_n^2, x_4^2, x_4x_5, \dots, x_n^2) = -F$ в силу полуинвариантности F относительно J.

Таким образом, $\mathbf{K}^G = \mathbb{R}[(x_1 - x_2 x_3)^2, x_2^2] \langle (x_1 - x_2 x_3) x_2, x_4, \dots, x_n \rangle$

$$\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[(x_1 - x_2 x_3)^2, x_2^2] \lfloor (x_1 - x_2 x_3) x_2, x_4, \dots, x_n \rfloor \cup \\
\cup \mathbb{R}[(x_1 - x_2 x_3)^2] \langle x_4, \dots, x_n \rangle \lfloor x_2, (x_1 - x_2 x_3) x_4, \dots, (x_1 - x_2 x_3) x_n \rfloor \cup \\
\cup \mathbb{R}[x_2^2] \langle x_4, \dots, x_n \rangle \lfloor x_1 - x_2 x_3, x_2 x_4, \dots, x_2 x_n \rfloor.$$

Случай $L_1 \subseteq P_2, L_2 \not\subseteq P_1$ аффинно эквивалентен случаю **4.3**.

4.4. $L_1 \nsubseteq P_2, L_2 \nsubseteq P_1, L_1 \neq L_2$.

Для $i \in \{1; 2\}$ пусть $L'_i = P_i \cap S$. Двойное отношение

$$\varkappa = (L_1, L_1'; L_2, L_2')$$

прямых L_1, L'_1, L_2, L'_2 назовем двойным отношением пары (R_1, R_2) .

По условию, $e_1 + \alpha e_2 \in L_2$, и из определения \varkappa следует, что $e_1 + \varkappa \alpha e_2 \in P_2$. Поэтому $P_2 = \ker(\alpha \varkappa x_1 - x_2), \ \varkappa \notin \{0; 1\}.$

Положим $\mu = \sqrt{|\varkappa|}$, $\alpha = \mu^{-1}$. Получаем базис, в котором $\mu e_1 + e_2 \in L_2$, $P_2 = \ker((\operatorname{sgn} \varkappa) \mu x_1 - x_2)$.

4.4.1. $\varkappa > 0$.

Пусть
$$\mathcal{H} = (H^t : t \in \mathbb{R})$$
, где $H^t = \{x_1' = x_1 \operatorname{ch} t + x_2 \operatorname{sh} t, \ x_2' = x_1 \operatorname{sh} t + x_2 \operatorname{ch} t\}.$

4.4.1.1. $\Lambda_2 = L_2$.

Если $\varkappa < 1$, то при $\varphi = 2$ arth μ имеем: $T = H^{\varphi}$, $G = \{H^{m\varphi}, H^{m\varphi}R_1 : m \in \mathbb{Z}\}$. Если $\varkappa > 1$, то полагая $\varphi = 2$ arcth μ , получаем:

$$T = H^{\varphi}J, \quad G = \{H^{2m\varphi}, \ H^{(2m+1)\varphi}J, \ H^{2m\varphi}R_1, \ H^{(2m+1)\varphi}JR_1 : m \in \mathbb{Z}\}.$$

Поэтому при любом положительном \varkappa , не равном 1, $\bar{G} = \mathcal{H} \cdot \{\text{id}, R_1, J, R_1 J\}$, из \mathcal{H} -инвариантности F имеем: $F = f(x_1^2 - x_2^2, x_3, \ldots, x_n) \in \mathbb{R}[x_1^2 - x_2^2, x_3, \ldots, x_n]$.

Но тогда $f(x_1^2-x_2^2,-x_3,\ldots,-x_n)\in\{-F,F\}$ в силу R_1 -полуинвариантности F. Отсюда $\mathbf{K}^G=\mathbb{R}[x_1^2-x_2^2]\langle x_2,\ldots,x_n\rangle$, $\mathbf{K}(G)=\mathbf{K}^G\cup\mathbb{R}[x_1^2-x_2^2]|x_3,\ldots,x_n|$.

4.4.1.2.
$$L_1 \cap \Lambda_2 = \emptyset$$
.

Если $\varkappa < 1$, то полагая $\varphi = 2 \operatorname{arth} \mu$, получаем:

$$T = H^{\varphi} S^1, \quad G = \{H^{m\varphi} S^m, H^{m\varphi} S^m R_1 : m \in \mathbb{Z}\}.$$

Если же $\varkappa > 1$. Полагая $\varphi = 2 \operatorname{arcth} \mu$, получаем: $T = H^{\varphi}S^1J$,

$$G = \{H^{2m\varphi}S^{2m}, \ H^{(2m+1)\varphi}S^{2m+1}J, \ H^{2m\varphi}S^{2m}R_1, \ H^{(2m+1)\varphi}S^{2m+1}JR_1 \ : \ m \in \mathbb{Z}\}.$$

Таким образом, учитывая периодичность функции $\exp: \mathbb{C} \to \mathbb{C}$, получаем, что при любом положительном \varkappa , не равном 1, $\bar{G} = \mathcal{H} \cdot \mathcal{S} \cdot \{ \text{id}, R_1, J, R_1 J \}$.

Но тогда из S-инвариантности F следует, что F не зависит от x_3 . Теперь, как и в случае 4.4.1.1, получаем:

$$\mathbf{K}^G = \mathbb{R}[x_1^2 - x_2^2] \langle x_4, \dots, x_n \rangle, \quad \mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1^2 - x_2^2] [x_4, \dots, x_n].$$

4.4.2. $\varkappa < 0$.

Пусть $\mathcal{E} = (E^t : t \in \mathbb{R})$, где $E^t = \{x_1' = x_1 \cos t - x_2 \sin t, \ x_2' = x_1 \sin t + x_2 \cos t\}$. Положим $\varphi = -2 \arctan \mu$.

4.4.2.1. $\Lambda_2 = L_2$.

Тогда $T = E^{\varphi}$, $G = \{E^{m\varphi}, E^{m\varphi}R_1 : m \in \mathbb{Z}\}.$

Если $\varphi = 2\pi k/m$, где k и m – взаимно-простые натуральные числа, то G конечна и изоморфна диэдральной группе H_2^m , и полуинварианты группы G могут быть выражены через базисные инварианты группы H_2^m (см. [6]).

Допустим, что φ не соизмеримо с π . Тогда G бесконечна и $\bar{G} = \mathcal{E} \cup (\mathcal{E} \cdot R_1)$ (такое же замыкание G имеет и относительно евклидовой топологии группы $\mathrm{Aff}(V)$).

Теперь из \mathcal{E} -инвариантности F следует, что

$$F = f(x_1^2 + x_2^2, x_3, \dots, x_n) \in \mathbb{R}[x_1^2 + x_2^2, x_3, \dots, x_n].$$

Из R_1 -полуинвариантности F получаем: $f(x_1^2+x_2^2,-x_3,\ldots,-x_n)\in\{-F,F\}$. Отсюда $\mathbf{K}^G=\mathbb{R}[x_1^2+x_2^2]\langle x_3,\ldots,x_n\rangle,\ \mathbf{K}(G)=\mathbf{K}^G\cup\mathbb{R}[x_1^2+x_2^2]\lfloor x_3,\ldots,x_n\rfloor.$

4.4.2.2.
$$L_1 \cap \Lambda_2 = \emptyset$$
.

Тогла $T = E^{\varphi}S^1$.

Если $\varphi=2\pi k/m$, где k и m – взаимно-простые натуральные числа, то полагая $\psi=2\pi/m$ и $G_0=\{E^{l\psi},\,E^{l\psi}\,R_1:l=0,\ldots,m-1\}$, получаем:

$$G = G_0 \cdot \{S^l : l \in \mathbb{Z}\}, \quad \bar{G} = G_0 \cdot \mathcal{S}.$$

При этом G_0 конечна и изоморфна диэдральной группе H_2^m , полуинварианты группы G не зависят от x_3 и выражаются через базисные инварианты группы H_2^m .

Допустим теперь, что φ не соизмеримо с π . Тогда $\bar{G} = (\mathcal{E} \cdot \mathcal{S}) \cup (\mathcal{E} \cdot \mathcal{S} \cdot R_1)$ в силу периодичности функции $t \mapsto (\cos t, \sin t)$.

Из S-инвариантности F следует, что F не зависит от x_3 , и, как в случае **4.4.2.1**, $\mathbf{K}^G = \mathbb{R}[x_1^2 + x_2^2]\langle x_4, \dots, x_n \rangle$, $\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[x_1^2 + x_2^2][x_4, \dots, x_n]$.

5. $L_1 \neq L_2$, $P_1 \neq P_2$, $V \neq S \oplus Q$.

Отсюда n > 2, $\dim(S \cap Q) = 1$, $L_1 + Q = L_2 + Q$, $L_1 \nsubseteq P_2$, $L_2 \nsubseteq P_1$.

Построим в V канонический базис (1), последовательно выбирая ненулевые векторы e_1, \ldots, e_n так, чтобы выполнялись все следующие условия:

- 1) $e_1 \in Q \cap S$, $e_2 \in L_1$, $e_1 + 2 e_2 \in L_2$ (это условие выполнимо, т.к. прямые L_1 , L_2 и $Q \cap S$ попарно различны и лежат в 2-плоскости S); $e_3 \in P_1 \setminus Q$, $e_2 + 2 e_3 \in P_2 \setminus Q$ (это условие выполнимо, т.к. $e_3 \notin P_2$, а 2-плоскость $\langle e_2, e_3 \rangle$ пересекает P_2 по прямой, которая не содержится в Q); если n > 3, то (e_1, e_4, \ldots, e_n) базис в Q;
 - 2) если $L_1 + Q \neq \Lambda_2 + Q$, то $e_3 = 2c + e_1/12$;
- 3) если $L_1 + Q = \Lambda_2 + Q$ и $L_1 \cap \Lambda_2 = \emptyset$ (и тогда n > 3, т.к. $L_1 + Q$ содержит скрещивающиеся прямые L_1 и Λ_2), то $e_4 = 2c$.

В таком базисе $R_1 = \{x_i' = -x_i \ (i \neq 2)\}, \ P_2 = \ker(2x_2 - x_3).$

5.1. $\Lambda_2 = L_2$.

Для любого $t \in \mathbb{R}$ пусть $R^t = \{x_1' = x_1 + t x_2 + t^2 x_3/2, \quad x_2' = x_2 + t x_3\}$. Тогда $\mathcal{R} = \{R^t : t \in \mathbb{R}\}$ – однопараметрическая группа параболических сдвигов, $T = R^1$, и поэтому $\bar{G} = \mathcal{R} \cup (\mathcal{R} \cdot R_1)$.

Из последнего равенства следует, что $F \in \mathbf{K}^{\mathcal{R}}$, т.е. (см. [6])

$$F = f(2x_1x_3 - x_2^2, x_3, \dots, x_n) \in \mathbb{R}[2x_1x_3 - x_2^2, x_3, \dots, x_n].$$

Теперь $f(2x_1x_3-x_2^2,-x_3,\ldots,-x_n)\in\{-F,F\}$ в силу R_1 -инвариантности F. Отсюда $\mathbf{K}^G=\mathbb{R}[2x_1x_3-x_2^2]\langle x_3,\ldots,x_n\rangle,\ \mathbf{K}(G)=\mathbf{K}^G\cup\mathbb{R}[2x_1x_3-x_2^2]|x_3,\ldots,x_n|.$

5.2.
$$L_1 + Q \neq \Lambda_2 + Q$$
.

Это эквивалентно тому, что $c \notin Q$.

Определяя A^t и $\mathcal A$ так же, как в п. 1^o , имеем: $T=A^1,\ \bar G=\mathcal A\cup(\mathcal A\cdot R_1).$

Теперь из (2) следует, что

$$F = f(x_1 - x_2 x_3 + x_3^3/3, 2x_2 - x_3^2, x_4, \dots, x_n) \in \mathbb{R}[x_1 - x_2 x_3 + x_3^3/3, 2x_2 - x_2^2, x_4, \dots, x_n].$$

Но тогда $f(-x_1+x_2x_3-x_3^3/3, 2x_2-x_3^2, -x_4, \ldots, -x_n) \in \{-F, F\}$ в силу R_1 -инвариантности F. Отсюда $\mathbf{K}^G = \mathbb{R}[2x_2-x_3^2]\langle x_1-x_2x_3+x_3^3/3, x_4, \ldots, x_n \rangle$ и

$$\mathbf{K}(G) = \mathbf{K}^G \cup \mathbb{R}[2x_2 - x_3^2][x_1 - x_2x_3 + x_3^3/3, x_4, \dots, x_n].$$

5.3.
$$L_1 + Q = \Lambda_2 + Q$$
, $L_1 \cap \Lambda_2 = \emptyset$.

Определяя N^t и \mathcal{N} так же, как в п. 1^o , имеем: $T=N^1$, $\bar{G}=\mathcal{N}\cup(\mathcal{N}\cdot R_1)$. Теперь из (3) получаем:

$$F = f(x_1 - x_2x_4 + x_3x_4^2/2, x_2 - x_3x_4, x_3, x_5, \dots, x_n) \in \mathbb{R}[x_1 - x_2x_4 + x_3x_4^2/2, x_2 - x_3x_4, x_3, x_5, \dots, x_n].$$

Отсюда $f(-x_1+x_2x_4-x_3x_4^2/2, x_2-x_3x_4, -x_3, -x_5, \dots, -x_n) \in \{-F, F\}$ в силу R_1 -инвариантности F. Значит,

$$\mathbf{K}^{G} = \mathbb{R}[x_{2} - x_{3}x_{4}]\langle x_{1} - x_{2}x_{4} + x_{3}x_{4}^{2}/2, x_{3}, x_{5}, \dots, x_{n}\rangle,$$

$$\mathbf{K}(G) = \mathbf{K}^{G} \cup \mathbb{R}[x_{2} - x_{3}x_{4}]|x_{1} - x_{2}x_{4} + x_{3}x_{4}^{2}/2, x_{3}, x_{5}, \dots, x_{n}|.$$

Заключение. Основные результаты работы:

Получена аффинная классификация пар отражений относительно прямых и групп, порожденных двумя отражениями относительно прямых; найдены полуинварианты бесконечных групп, порожденных двумя отражениями относительно прямых.

Аналогичным образом могут быть вычислены полуинварианты нецентроаффинных групп, действующих на нецилиндрических алгебраических поверхностях и порожденных отражениями относительно прямых.

Список литературы

- [1] Игнатенко В.Ф. Алгебраические поверхности с бесконечным множеством плоскостей косой симметрии. IV // Мат. физика, анализ, геометрия. − 1998. Т.5, № 1/2. − С. 35–48.
- [2] Рудницкий О.И. Об одном классе диких групп косых симметрий, имеющих четые орбиты направлений симметрии // Ученые записки ТНУ, 2002, сер. "Матем. Мех. Информ. и киберн. № 2. С. 75–81.
- [3] Комиссаренко Е.В., Криворучко А.И. Об инвариантах бесконечных групп отражений с четырьмя линейными оболочками орбит направлений симметрии // Ученые записки ТНУ, 2005, сер. "Матем. Мех. Информ. и киберн. № 1. С. 33–41.
- [4] Криворучко А.И. О кольцах инвариантов групп, порожденных отражениями относительно скрещивающихся прямых. Мат. физика, анализ, геометрия (2000), т. 7, N = 4. C. 415–441.
- [5] Криворучко А.И. О нецентроаффинных группах, порожденных отражениями относительно прямых // Ученые записки ТНУ, 2004, сер. "Матем. Мех. Информ. и киберн. № 1. – С. 38–46.

[6] Криворучко А.И. О группах, порожденных двумя аффинными отражениями // Ученые записки ТНУ, 2006, сер. "Матем. Мех. Информ. и киберн. № 2. – С. 43–51.

Знайдена афінна класифікація пар афінних віддзеркалень відносно прямих, а також груп, які породжені двома такими віддзеркаленнями; побудовани усі напів-інваріанти нескінченних груп, які породжені двома віддзеркаленнями.

Affine classification of groups generated by two affine reflections through straight lines are obtained. Semi-invariants of infinite groups generated by two affine reflections through straight lines are calculated.