Ученые записки Таврического национального университета им. В. И. Вернадского

серия «Математика. Механика. Информатика и кибернетика» Том 20(59) № 1 (2007), с. 70–79.

М. А. Муратов, Ю. С. Самойленко

О КОММУТИРУЕМОСТИ ИЗМЕРИМЫХ ОПЕРАТОРОВ, ПРИСОЕДИНЕННЫХ К АЛГЕБРЕ ФОН НЕЙМАНА

1. Введение

Пусть H – гильбертово пространство, T и S – два самосопряженных линейных оператора, действующих в H.

Если операторы T и S ограничены, то коммутируемость TS = ST этих операторов означает, что $TS\xi = ST\xi$ для каждого вектора $\xi \in H$.

Спектральная теорема для ограниченных самосопряженных операторов показывает, что следующие условия эквивалентны (см.например, [8]):

- (i) TS = ST;
- (ii) Спектральные проекторы $E_T(\Delta)$ и $E_S(\Delta')$ попарно коммутируют для любых Δ , $\Delta' \in \mathfrak{B}(\mathbb{R}^1)$ ($\mathfrak{B}(\mathbb{R}^1)$ борелевская σ -алгебра подмножеств \mathbb{R}^1):

$$E_T(\Delta)E_S(\Delta') = E_S(\Delta')E_T(\Delta);$$

(iii) Коммутируют унитарные группы $\mathcal{U}_t = e^{itT}$ и $\mathcal{V}_s = e^{isS}$:

$$e^{itT}e^{isS} = e^{isS}e^{itT}, t, s \in \mathbb{R}^1.$$

Если T и S два,
вообще говоря, неограниченных самосопряженных оператора, то, даже если

$$\mathfrak{D}(T) \cap \mathfrak{D}(S)$$

содержит плотное в H инвариантное относительно операторов T и S линейное подмножество $\Phi,$ равенство

$$TS\xi = ST\xi$$

для любого $\xi \in \Phi$ не эквивалентно тому, что коммутируют их спектральные проекторы или унитарные группы (см.например, [8])

Будем говорить, что два самосопряженных оператора T и S сильно коммутируют, если коммутируют их спектральные разложения.

Если операторы T и S сильно коммутируют, то коммутируют и все ограниченные борелевские функции от этих операторов, в частности, коммутируют

их резольвенты $R_T(\lambda)$ и $R_S(\mu)$, если $Im\lambda \neq 0$ и $Im\mu \neq 0$, и унитарные группы $\mathcal{U}_t = e^{itT}$ и $\mathcal{V}_s = e^{isS}$ для всех $s,t \in \mathbb{R}$ (см., например, [8]).

В работе [10] было доказано, что два самосопряженных оператора коммутируют в *-алгебре S(M) измеримых операторов (см.п.3) тогда и только тогда, когда они сильно коммутируют. Это доказательство опирается на понятие преобразования Кэли неограниченного самосопряженного оператора. В п.4 мы предлагаем другой метод доказательства этого утверждения, использующий критерий интегрируемости кососимметрических представлений алгебры Ли.

2. Сильная коммутируемость неограниченных операторов

1. Неограниченные самосопряженные операторы T и S, как правило, задаются на плотных в H множествах $\mathfrak{D}_0(T)$ и $\mathfrak{D}_0(S)$ их существенной самосопряженности (т.е., операторы T и S совпадают с замыканиями операторов $T|_{\mathfrak{D}_0(T)}$ и $S|_{\mathfrak{D}_0(S)}$). Приведем доказательство следующего простого критерия сильной коммутируемости операторов T и S:

Теорема 1. Для того, чтобы операторы T и S сильно коммутировали, необходимо и достаточно, чтобы выполнялись следующие условия:

1) Существует плотное в H инвариантное относительно операторов T и S подмножество

$$\Phi \subseteq \mathfrak{D}_0(T) \cap \mathfrak{D}_0(S);$$

2) Для каждого вектора $\xi \in \Phi$

$$TS\xi = ST\xi;$$

3) Для каждого вектора $\xi \in \Phi$

$$||T^k S^j \xi||_H \leqslant C_{\xi}^{k+j}, \ k, j = 1, 2, \dots$$

Доказательство. Если операторы T и S сильно коммутируют, то, как отмечено выше, спектральные проекторы $E_T(\Delta)$ и $E_S(\Delta')$ операторов T и S коммутируют для любых борелевских подмножеств Δ , $\Delta' \in \mathfrak{B}(\mathbb{R}^1)$. Положим

$$\Phi = \bigcup_{n=0}^{\infty} E_T([-n, n]) E_S([-n, n])(H).$$

Тогда Φ является плотным в H инвариантным относительно T и S подмножеством их существенной самосопряженности.

Если $\xi \in \Phi$, то существует такое n_0 , что

$$\xi = E_T([-n_0, n_0])E_S([-n_0, n_0])\xi$$

и, следовательно,

$$||T^k S^j \xi||_H = ||T^k S^j E_T([-n_0, n_0]) E_S([-n_0, n_0]) \xi||_H \leqslant n_0^{k+j} ||\xi||_H.$$

Необходимость в теореме 1 доказана.

Достаточность условий теоремы следует из коммутируемости на Φ унитарных групп $\mathcal{U}_t = e^{itT}$ и $\mathcal{V}_s = e^{isS}, \ t, s \in \mathbb{R}^1.$

2. Ниже мы также будем пользоваться другим критерием сильной коммутируемости:

Пусть T и S — симметрические операторы в гильбертовом пространстве H, \mathfrak{D} — плотное линейное подпространство в H, такое, что

$$\mathfrak{D} \subset \mathfrak{D}(T) \cap \mathfrak{D}(S) \cap \mathfrak{D}(T^2) \cap \mathfrak{D}(TS) \cap \mathfrak{D}(ST) \cap \mathfrak{D}(S^2),$$

И

$$TS\xi = ST\xi$$
 для всех $\xi \in \mathfrak{D}$.

Если ограничение оператора T^2+S^2 на $\mathfrak D$ существенно самосопряженно, то из критерия интегрируемости кососимметрического представления алгебры \overline{A} и (см. [5]) следует, что операторы T и S существенно самосопряженные и их замыкания \overline{T} и \overline{S} сильно коммутируют.

3. *-Алгебра S(M) измеримых операторов, присоединенных к алгебре фон Неймана M.

В этом пункте мы пользуемся стандартной терминологией теории операторов и операторных алгебр (см. [2], [3], [9]) и алгебр измеримых операторов (см. [1],[4], [6], [7]).

Пусть M — алгебра фон Неймана ограниченных операторов, действующих в гильбертовом пространстве H, т.е. банахова *-подалгебра в B(H) удовлетворяющая условию

$$M'' = M$$
,

где

$$M' = \{S \in \mathcal{B}(H): ST = TS$$
для любого $T \in M\}$

коммутант алгебры фон Неймана M, а

$$M'' = \{ S \in \mathcal{B}(H) : ST = TS$$
для любого $T \in M' \}$

ее бикоммутант.

Линейное подпространство \mathfrak{D} в H называется $npucoedunenhым <math>\kappa$ M (обозначение: $\mathfrak{D} \eta M$), если

$$U(\mathfrak{D})\subset \mathfrak{D}$$

для любого унитарного оператора U из M'.

Заметим, что если \mathfrak{D} — замкнутое линейное подпространство в H и $P_{\mathfrak{D}}$ — оператор ортогонального проектирования на \mathfrak{D} , то $\mathfrak{D} \eta M$ тогда и только тогда, когда $P_{\mathfrak{D}} \in P(M)$, где P(M) — полная решетка всех ортопроекторов алгебры фон Неймана M (см. [2]).

Замкнутый линейный оператор T, действующий в гильбертовом пространстве H, с областью определения $\mathfrak{D}(T)$, называется $npucoedunenhым <math>\kappa M$ (обозначение: $T \eta M$), если

$$U(\mathfrak{D}(T)) \subset \mathfrak{D}(T)$$

для любого унитарного оператора U из коммутанта M' и

$$UT\xi = TU\xi$$

для всех $\xi \in \mathfrak{D}(T)$.

Очевидно, что если $T \in B(H)$ и $T \eta M$, то $T \in M$.

Линейное подпространство $\mathfrak{D}\subseteq H$ называется *сильно плотным* в H относительно алгебры фон Неймана M, если

- i) $\mathfrak{D} \eta M$;
- іі) Существует последовательность ортопроекторов $\{P_n\}_{n=1}^{\infty}\subseteq P(M)$ такая, что
 - ii 1) $P_n \uparrow I$,
 - ii 2) $P_n(H) \subseteq \mathfrak{D}$,
- іі 3) P_n^\perp является конечным проектором для каждого $n=1,2,\ldots$, где $P_n^\perp=I-P_n$.

Замечание 1. 1) Любое сильно плотное подпространство \mathfrak{D} в H является плотным.

2) Если $\mathfrak{D}_1, \ \mathfrak{D}_2, \dots, \mathfrak{D}_k$ – конечное число сильно плотных подпространств, то подпространство

$$\mathfrak{D} = \bigcap_{i=1}^k \mathfrak{D}_i$$

тоже сильно плотно в H.

Замкнутый линейный оператор T, действующий в гильбертовом пространстве H, называется uзмеримым относительно алгебры фон Неймана M, если

- i) $T\eta M$;
- ii) Область определения $\mathfrak{D}(T)$ оператора T сильно плотна в H;

Обозначим, далее, через S(M) множество всех операторов, измеримых относительно алгебры фон Неймана M. Известно, что

1) $M \subseteq S(M)$,

- 2) Если M коммутативная алгебра фон Неймана, то ее можно отождествить с *-алгеброй $L_{\infty}(\Omega, \Sigma, m)$ всех ограниченных комплекснозначных функций, заданных на измеримом пространстве (Ω, Σ, m) с полной локально конечной мерой m. В этом случае S(M) изоморфно *-алгебре $S(\Omega, \Sigma, m)$ всех измеримых почти всюду конечных комплекснозначных функций на (Ω, Σ, m) .
 - 3) Если M = B(H), то S(M) = M = B(H).

Пусть T и S – операторы, измеримые относительно алгебры фон Неймана M. Замыкания

$$\overline{T+S}$$
 M \overline{TS}

операторов T+S и TS являются измеримыми относительно M операторами. Эти замыкания называются сильной суммой и сильным произведением операторов T и S соответственно, и обозначаются

$$\overline{T+S} = T \dotplus S \ \overline{TS} = T \cdot S.$$

Множество S(M) является *-алгеброй над полем \mathbb{C} с единичным элементом I относительно операций сильной суммы и сильного произведения и операции перехода к сопряженному оператору (умножение на скаляры определяется обычным образом, причем считается, что $0 \cdot T = 0$).

Предложение 1. Если $T \in S(M)$, то существует такое сильно плотное линейное подпространство $\mathfrak{D} \subset \mathfrak{D}(T)$, что

$$T(\mathfrak{D})\subset\mathfrak{D}$$
.

Доказательство. Пусть оператор $T \in S(M)$. Тогда его область определения $\mathfrak{D}(T)$ сильно плотна. Обозначим через

$$\mathfrak{D} = T^{-1}(\mathfrak{D}(T)) = \{ \xi \in \mathfrak{D}(T) : T\xi \in \mathfrak{D}(T) \}.$$

Очевидно, \mathfrak{D} — линейное сильно плотное подмножество в H (см. [7]). Осталось заметить, что $\mathfrak{D} \subset \mathfrak{D}(T)$ и

$$T(\mathfrak{D})\subset\mathfrak{D}$$
.

Предложение 2. Если оператор $T \in S(M)$ и $E_{|T|}(\lambda_0)$ такой проектор из спектрального семейства $\{E_{|T|}(\lambda)\}_{\lambda>0}$ проекторов оператора |T|, что $E_{|T|}^{\perp}(\lambda_0)$ – конечный проектор, то оператор T сильно определен последовательностью проекторов $\{P_n\}_{n=1}^{\infty}$ и совпадает с замыканием сужения T на подпространство $\bigcup_{n=1}^{\infty} P_n(H)$, где $P_n = E_{|T|}(\lambda_0 + n)$.

Доказательство. Пусть $T \in S(M)$ и $\{E_{|T|}(\lambda)\}_{\lambda>0}$ спектральное семейство проекторов оператора |T|. Тогда существует такое $\lambda_0 > 0$, что

$$E_{|T|}^{\perp}(\lambda_0) = E(\{|T| \geqslant \lambda_0\})$$

конечный проектор (см. [4]).

Оператор |T| измерим относительно алгебры фон Неймана M, и поэтому

$$\{E_{|T|}(\lambda)\}_{\lambda>0}\subset P(M)$$
 if $\sup_{\lambda>0}E_{|T|}(\lambda)=I.$

Рассмотрим последовательность проекторов $\{P_n\}_{n=1}^{\infty}$, где

$$P_n = E_{|T|}(\lambda_0 + n), \quad n = 1, 2, \dots$$

Тогла

$$P_n\uparrow I,\quad P_n\subset\mathfrak{D}(|T|)=\mathfrak{D}(T)\quad \text{if}\quad P_n^\perp=E_{|T|}^\perp(\lambda_0+n)\leqslant E_{|T|}^\perp(\lambda_0),$$

и потому P_n – конечный проектор для каждого $n=1,2,\ldots$

Следовательно, оператор T определен последовательностью проекторов $\{P_n\}_{n=1}^{\infty}$ и, поэтому совпадает с замыканием сужения T на подпространство $\bigcup_{n=1}^{\infty} P_n(H)$ (см. [7]).

Предложение 3. Если оператор $T \in S(M)$ самосопряженный и $\{E_T(\lambda)\}_{\lambda \in \mathbb{R}}$ его спектральное семейство проекторов, то существует такое $\lambda_0 > 0$, что проектор $E_T^{\perp}([-\lambda_0, \lambda_0])$ конечен, где

$$E_T([-\lambda_0, \lambda_0]) = E_T((-\infty, \lambda_0]) - E_T([-\infty, -\lambda_0])$$

проектор, отвечающий отрезку $[-\lambda_0, \lambda_0]$.

Доказательство. Так как оператор $T \in S(M)$ самосопряженный, то положительные самосопряженные операторы

$$T_{+} = \frac{1}{2}(|T| + T)$$
 и $T_{-} = \frac{1}{2}(|T| - T)$

принадлежат S(M).

Пусть $\{P_{T_+}(\mu)\}_{\mu\geq 0}$ и $\{Q_{T_-}(\nu)\}_{\nu\geq 0}$ спектральные семейства проекторов операторов T_+ и T_- соответственно. Тогда (см.[4]) существуют такие $\mu_0>0$ и $\nu_0>0$, что проекторы $P_{T_+}^\perp(\mu_0)$ и $Q_{T_-}^\perp(\nu_0)$ конечны. Пусть

$$\lambda_0 = \max\{\mu_0, \nu_0\}.$$

Рассмотрим проектор $E_T([-\lambda_0, \lambda_0]) = P_{T_+}(\lambda_0) \wedge Q_{T_-}(\lambda_0)$. Тогда

$$E_T^{\perp}([-\lambda_0, \lambda_0]) = P_{T_+}^{\perp}(\lambda_0) \vee Q_{T_-}(\lambda_0) \leq P_{T_+}^{\perp}(\mu_0) \vee Q_{T_-}^{\perp}(\nu_0),$$

и поэтому проектор $E_T^{\perp}([-\lambda_0, \lambda_0])$ конечен.

Предложение 4. Если оператор $T \in S(M)$ самосопряжен, то существует такая последовательность проекторов $\{P_n\}_{n=1}^{\infty} \subset P(M)$, что

- i) $P_n \uparrow I \quad npu \quad n \to \infty;$
- ii) $P_n(H) \subset \mathfrak{D}(T)$ для любого $n=1,2,\ldots;$
- $TP_n\xi=P_nT\xi$ для любого вектора $\xi\in P_n(H)$ и любого $n=1,2,\ldots$

Доказательство. В силу предложения 3, если оператор $T \in S(M)$ самосопряженный и $\{E_T(\lambda)\}_{\lambda \in \mathbb{R}}$ его спектральное семейство проекторов, то существует такое $\lambda_0 > 0$, что проектор $E_T^{\perp}([-\lambda_0, \lambda_0])$ конечен. Обозначим

$$P_n = E_T([-\lambda_0 - n, \lambda_0 + n]), \quad n = 1, 2, \dots$$

Тогда последовательность $\{P_n\}_{n=1}^{\infty} \subset P(M)$ удовлетворяет перечисленным условиям.

Замечание 2. Линейные подпространства $P_n(H)$, построенные в доказательстве предложения 4, являются инвариантными не только относительно оператора T, но и относительно каждого оператора T^k , $k \in \mathbb{N}$. Действительно, для любого вектора $\xi \in P_n(H)$ и любого $n = 1, 2, \ldots$

$$T\xi = TP_n\xi = P_nT\xi \in P_n(H) \subset \mathfrak{D}(T).$$

Следовательно,

$$T^{2}\xi = T(T\xi) = T(P_{n}T\xi) = P_{n}(T^{2}\xi) \in P_{n}(H) \subset \mathfrak{D}(T),$$

и так далее, для любого натурального k. Итак,

$$T^k: P_n(H) \to P_n(H).$$

Замечание 3. Каждый из операторов T^k , $k=1,2,\ldots$ сильно определен на последовательности $\{P_n\}_{n=1}^{\infty}$, и совпадает с замыканием сужения оператора T^k на линейное подпространство $\bigcup_{n=1}^{\infty} P_n(H)$.

Замечание 4. Для самосопряженного оператора $T \in S(M)$

$$\mathfrak{D} = \bigcup_{n=1}^{\infty} P_n(H).$$

является плотным линейным инвариантным подпространством в H.

- 4. Сильная коммутируемость операторов из *-алгебры S(M)
- 1. Рассмотрим два измеримых оператора $T, S \in S(M)$.

Предложение 5. Множество

$$\mathfrak{D} = \mathfrak{D}(TS) \cap \mathfrak{D}(ST)$$

является сильно плотным линейным подпространством в H.

Доказательство. Так как

$$\mathfrak{D}(TS) = \{\xi \in \mathfrak{D}(S): \ S\xi \in \mathfrak{D}(T)\} = \mathfrak{D}(S) \cap S^{-1}(\mathfrak{D}(T)),$$

$$\mathfrak{D}(ST) = \{ \xi \in \mathfrak{D}(T) : T\xi \in \mathfrak{D}(S) \} = \mathfrak{D}(T) \cap T^{-1}(\mathfrak{D}(S)),$$

операторы T и S измеримы, и поэтому их области определения $\mathfrak{D}(T)$ и $\mathfrak{D}(S)$ сильно плотны. Следовательно, сильно плотны

$$T^{-1}(\mathfrak{D}(S))$$
 и $S^{-1}(\mathfrak{D}(T)),$

а потому, сильно плотны

$$\mathfrak{D}(S) \cap S^{-1}(\mathfrak{D}(T)) = \mathfrak{D}(TS)$$
 и $\mathfrak{D}(T) \cap T^{-1}(\mathfrak{D}(S)) = \mathfrak{D}(ST)$.

Значит, сильно плотно

$$\mathfrak{D}=\mathfrak{D}(TS)\cap\mathfrak{D}(ST).$$

Замечание 5. Если $T, S \in S(M)$ и операторы TS и ST совпадают на любом сильно плотном подпространстве $\mathfrak{D}_1 \subset \mathfrak{D}$, то в алгебре S(M)

$$T \cdot S = S \cdot T.$$

2. Имеет место следующая теорема.

Теорема 2. Для того, чтобы два самосопряженных линейных оператора T u S u *-алгебры S(M) коммутировали как элементы алгебры, необходимо u достаточно, чтобы они сильно коммутировали.

Доказательство. Пусть T и S — два коммутирующих в *-алгебре S(M) самосопряженных линейных оператора.

В силу предложения 5 и замечания 1, множество

$$\mathfrak{D} \subset \mathfrak{D}(T) \cap \mathfrak{D}(S) \cap \mathfrak{D}(T^2) \cap \mathfrak{D}(TS) \cap \mathfrak{D}(ST) \cap \mathfrak{D}(S^2)$$

сильно плотно, и потому, плотно в H.

Пусть \mathfrak{D} определено последовательностью проекторов $\{P_n\}_{n=1}^{\infty}\subset P(M)$, то есть,

$$P_n \uparrow I$$
, $P_n(H) \subset \mathfrak{D}$ и P_n^{\perp} конечны.

Тогда оператор T^2+S^2 , как оператор из S(M), совпадает с замыканием сужения T^2+S^2 на $\bigcup_{n=1}^{\infty} P_n(H)$, (см.[7]), а следовательно, совпадает с замыканием сужения T^2+S^2 на \mathfrak{D} .

Кроме того, по нашему предположению,

$$TS\xi = ST\xi$$

для любого $\xi \in \mathfrak{D}$.

Следовательно, в силу критерия сильной коммутируемости (см.п.2), операторы T и S сильно коммутируют.

Обратно, пусть самосопряженные измеримые операторы T и S сильно коммутируют, и $\{E_T(\Delta)\}$ и $E_S(\Delta')$ спектральные семейства проекторов этих операторов. Рассмотрим последовательность проекторов

$$P_n = E_T([-n, n])E_S([-n, n]), \quad n = 1, 2, \dots$$

Тогда

$$P_n \uparrow I, P_n(H) \subset \mathfrak{D}(TS) \bigcap \mathfrak{D}(ST)$$

и проекторы $P_n^{\perp} = I - P_n$ конечны. Следовательно, множество

$$\mathfrak{D} = \bigcup_{n=1}^{\infty} E_T([-n, n]) E_S([-n, n])(H)$$

сильно плотно в H и инвариантно относительно каждого из операторов T и S. Кроме того, для любого $\xi \in \mathfrak{D}$ существует такой номер n_0 , что

$$\xi \in E_T([-n_0, n_0])E_S([-n_0, n_0])(H).$$

Поэтому

$$TS\xi = TSE_T([-n_0, n_0])E_S([-n_0, n_0])\xi =$$

$$= (E_T([-n_0, n_0])TE_T([-n_0, n_0]))(E_S([-n_0, n_0])SE_S([-n_0, n_0]))\xi =$$

$$= (E_S([-n_0, n_0])SE_S([-n_0, n_0]))(E_T([-n_0, n_0])TE_T([-n_0, n_0]))\xi =$$

$$= STE_T([-n_0, n_0])E_S([-n_0, n_0])\xi = ST\xi.$$

Следовательно, операторы TS и ST совпадают на всюду плотном подмножестве $\mathfrak{D}.$ Поэтому,

$$T \cdot S = S \cdot T.$$

Список литературы

- [1] Segal I. E. A non-commutative extension of abstract integration // Ann. Math. 1953.- N 57.- P. 401–457.
- [2] Stratila S., Zsido L. Lectures on von Neumann algebras.- England Abacus Press, 1975.-478 p.
- [3] Takesaki M. Theory of operator algebras I.- New York: Springer, 1979.- 415 p.
- [4] Yeadon F. J. Convergence of measurable operators // Proc. Camb. Phil. Soc.- 1973.- № 74.-P. 257–268.
- [5] Барут А., Рончка Р. Теория представления групп и ее приложения. Том1. Москва: Издательство "Мир 1980.- 455 стр.
- [6] Муратов М.А., Чилин В.И. Сходимости в *-алгебрах локально измеримых операторов. // Таврический вестник информатики и математики , № 2, с. 81 100, 2004.
- [7] Муратов М.А. К вопросу о коммутируемости локально измеримых операторов, присоединенных к алгебре фон Неймана. // Ученые записки Таврического Национального Университета, Т.19(58), № 2, с. 52 62, 2006.
- [8] Рид М., Саймон Б. Методы современной математической физики. Том1. Функциональный анализ Москва: Издательство "Мир 1977. 357 стр.
- [9] Самойленко Ю. С. Спектральная теория наборов самосопряженных операторов. Киев: Наук. думка, 1984.- 232 стр.
- [10] Сарымсаков Т. А., Аюпов Ш. А., Хаджиев Д., Чилин В. И., Упорядоченные алгебры.-Ташкент: ФАН, 1983.- 303 с.