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We have considered a new type of singular beams called as optical quarks. They have fractional topological
charges being equal to half an integer and they possess rather unique properties. There are four types of optical
quarks, even and odd ones, which reveal the opposite signs of topological charges. The sums or differences of
the even and odd quarks form standard vortex or non-vortex beams with the topological charges of integer
order. All the quarks in the same beam annihilate and the beam vanishes. We conducted an analysis of all
possible combinations of even and odd optical quarks with different charges. What provided an opportunity to
explore what interactions correspond to their “sum” and “difference”.

Keywords: optical vortex, fractional charge.

PACS: 42.25.Fx, 47.32.C

INTRODUCTION

As far back as in the beginning of 1990s, Soskin et al. [1] have wondered at a
'strange' behaviour of the simplest singular beams with fractional topological charges. It
turns out that the inherent property of such beams is that the initial field distribution is not
recovered during propagation along any beam length, while the optical vortex with a
fractional topological charge is not nucleated at any beam cross section. Indeed, a broken
axial symmetry of the beam does not permit reconstructing the propagating field. The
immediate inference is that the vortex beams with the fractional topological charges
cannot exist in principle. Although such a simple statement does not need a strong
confirmation at all, the work by Berry [2] has ignited a heated discussion. Berry has
considered the process of diffraction for a Gaussian (G) beam by a spiral phase plate with
the fractional phase step. The evolution of the diffracted beam manifests itself in the form
of beam fracture, with chains of singly charged optical vortices. However, the major point
has been that the beam could carry over a fractional orbital angular momentum (OAM).

An avalanche of subsequent studies has surpassed all imagination [4]. The detailed
analysis has shown that the fractional optical vortex splits into an infinite series of integer-
order vortices, while the OAM of the beam is defined by contributions of integer-order
optical vortices. Although it seems at the first sight that fractionalising the OAM of the
beam contradicts the foundations of quantum mechanics, the authors of the work [7] have
shown the mixed stated of photons to be able to carry over the fractional OAMs. At the
same time, according to the results [2], the fractional-vortex beam must inevitably be
destroyed while propagating, because of different phase velocities of partial elementary
beams involved. Nevertheless, the recent studies [3,6] have demonstrated availability of
spatially invariant beams with fractional OAMs and, in particular, with fractional optical
vortices [3,6] (so-called Erf-G beams).
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Such unusual properties of the fractional-vortex beams compel to peer more
attentively into the structure of spatially invariant fractional-vortex beams. The aim of the
present article is to analyse the interaction features of elementary fractional-vortex beams
in the free space.

1. THEORY

We have shown in the study [3,6] that the error function-Gaussian beams (Erf-G
beams) bearing optical vortices with the topological charges / =+1/2 (Fig.1) belong to the
strong solutions of the vector paraxial wave equation and refer to a set of so-called
standard paraxial beams (Hermite-Gaussian (HG), Laguerre-Gaussian (LG), Bessel-
Gaussian (BG), etc.), with a complex argument.

(a) (b)

Fig. 1. Intensity (a) and phase (b) distributions for erf- beams with wy =35 um in the
initial plane z =0 (a) m™" and (b) m™".

In contrast to the usual standard beams (e.g., HG, Laguerre (L), G or BG ones), the
erf-G beams have a non-factorising form, i.e. their azimuthal (p) and radial (r) variables
are not separated. The scalar erf-G beam may be written in the form
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- 2i\/;e 2

W, = N NGle 2 erf(iRsin %the 2 erf[Rcos %) , (1)
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c
waist at z =0, k the wavenumber, s = =1, and the free parameter K can acquire arbitrary
values, including complex ones. The field distribution given by Eq. (1) depends on the
free parameter K.
Near the beam axis where Kr is very small (Kr << 1), the wave function of the erf-G
beam given by Eq. (1) may be presented as
isp -R’ R’
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Notice that the two terms in Eq. (2) have much to do with the forms of the fractional-
vortex beams suggested by Soskin et al. in the work [1]. Let us write out a generalised
form of such wave constructions at the initial plane z = 0 and outline their basic
properties:

0 - cos(%jemzwm o
0," = —cos[?je_ lZmF(r), 5)
o= —isin(%)e_ i;wF(r), 6)

where F (r) is the radial envelope of the standard paraxial beam and m = 2m'+1 is an odd
number.
An arbitrary non-vortex beam can be presented as a superposition of the wave
elements given by Egs. (3)-(6):
F()=0."+0y" or Fr)=—0."+0,") @

Correspondingly, the beams with the edge dislocations may be written as
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Frkos(mp)=10:" - 051 -0, +0,7'| ®)
F(r)oos(mp) =10 = 0 + 03" - 057§ ©)
However, since the vortex beams of high orders are unstable with respect to slight
perturbations, later on we will focus our attention only on the simplest vortex beams with
m==l.
Another basic property is that the sum all the wave constructions given by Egs. (3)-
(6) vanishes:

0. +0,4" +O." +0,;" =0. (10)

In analogy with the Gell-Mann quark model of hadrons, we will call such wave
constructions as optical quarks. In this way the wave constructions 0, and On" may
be treated as anti-quarks. Eqs. (7) and (8) can be read such that a superposition of two
even and odd quarks or anti-quarks forms a non-vortex beam, while their difference

represents a vortex-beam. At the same time, the occurrence of all the quarks and anti-
quarks results in their total annihilation (see Eq. (10)).

2. GENERATION OF ERF-G BEAMS

Generation of optical quarks is possible due to the use of computer-generated
holograms [1] shown in Fig. 2.

Fig. 2. Computer generated hologram.

For the generation of optical quarks and their analysis was assembled Mach-Zehnder
interferometer (Fig. 3). For the light source we used a He-Ne laser LGN-207A. After the
laser light propagated by splitting cube, where the second beam was directed into the
support arm of the interferometer. The main beam spread and entered to polarizer. There
he converted into a linearly polarized, and then fell by a quarter wave plate, and converted
into a circularly polarized. After that, the beam was diffracted by the hologram (Fig. 3(6)).
On the phase transporant generated a spectrum of beams (Fig. 4). Central order is a beam
of zero charge, each next beam differs from the preceding one by /= 1/2 in dependence of
order. Thus for the experiment, we are only suitable —1 and +1 order.

17



EGOROV YU. A., KONOVALENKO V. L., VOLYAR A. V.

Fig. 3. The experimental setup for the generation of fractional topological charges:
1 — He-Ne laser; 2 — polarizer; 3 — quarter wave plate; 4, 8 — splitting cube; 5 — hologram;
6 — diaphragm; 7, 9 — mirror; 10 — camera.

Fig. 4. The spectrum of beams carrying fractional charge.

(a) (b)
Fig. 5. Intensity (a) and phase (b) distributions for erf- beams with / = 1/2.
From the spectrum of the hologram we chose the needed optical quarks (+1 and —1

order) Fig. 5. Final beam interfered with the reference beam (Fig. 5, b). Overall picture of
falling on the CCD camera.
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3. THE ALGEBRA OF FRACTIONAL CHARGES

To study the interaction of fractional charges has been assembled experimental set-up
(Fig. 6). For the light source used laser LGN-207B (1), a power of 0.5 mW,
A =632 microns. When linearly polarized light passes through the quarter-wave plate (3),
the beam is converted into a circularly polarized, and placed in a Mach-Zehnder
interferometer. Consisting of splitting the cubes (4, 8) and mirrors (7). Each of the arms in
the direction of propagation of the beam was placed computer synthesized hologram (5).

After output generates eddies fractional charges with different combinations of
(=172, 1=+1/2), I=+172, I=-1/2), (I=-1/2, [=-1/2), (I=—1/2, [=+1/2). We took
one of these combinations. Both vortices were combined by splitting cube (5), after which
there was the result of their interaction. The result of the experiment were recorded by
CCD camera (9) and displayed on the monitor.

Fig. 6. The experimental set-up for the “addition” and “subtraction” fractional
topological charges: 1 — HeNe laser; 2 — polarizer; 3 — quarter wave plate; 4, 8 — splitting
cubes; 5, 9 — hologram; 6, 10 — diaphragm; 7, 11 — mirror; 12 — camera.

Since there are four combinations of addition of beam intensity, we need to choose
the most interesting. As shown by theoretical calculations combination (/= 1/2, [ =—1/2)
and the combination of (/=-1/2, [=+1/2) lead to the same type of addition of beam
intensity. A combination of (/=1/2, /=+1/2) and (/=-1/2, [=-1/2) are identical but
opposite topological charges.

4. THE ADDITION OF OPTICAL VORTICES WITH FRACTIONAL CHARGE

During the experiment it was shown that when placed in the assembled installation
scheme of hologram (/ = 1/2, [ = +1/2) is generated at the output of the interference pattern
(Fig. 7) is the sum formed by the addition of the intensity of the beams.
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(a) (b) (c)

Fig. 7. The addition of optical vortices with fractional charge: (a) optical vortex of
charge / = 1/2; (b) optical vortex of charge / = 1/2; (c) the resulting interference pattern.

But since each of these beams has its own topological charge /= 1/2, the result of
addition of these beams is formed interference pattern displayed on it with the topological
sum of two optical vortices. As can be seen from the interference pattern of the resulting
beam is equal to the topological charge / = 1. Thus is explained the law of conservation of
topological charges.

5. SUBTRACTION OF OPTICAL VORTICES WITH FRACTIONAL CHARGE

During the experiment it was shown that when placed in the assembled installation
scheme hologram (/= 1/2, [ =-1/2), the output interference pattern generated, which is
the sum formed by adding the intensities of the beams (Fig. 8). But since each of these
beams has its own topological charge /=1/2, the result of addition of these beams is
formed interference pattern displayed on it with the topological sum of two optical
vortices.

(a) (b) (c)

Fig. 8. The subtraction of optical vortices with fractional charge: (a) optical vortex of
charge /= 1/2; (b) optical vortex of charge / = —1/2; (c) the resulting interference pattern.

As can be seen from the resulting interference pattern has a beam topological charge
equal to /=0 (Fig. 8, c¢). Thus is explained the law of conservation of topological charges.

CONCLUSION

So, a new type of singular beams called as optical quarks was considered. They have
fractional topological charges being equal to half an integer and they possess rather unique

20



ALGEBRA OF OPTICAL QUARKS

properties. There are four types of optical quarks, even and odd ones, which reveal the
opposite signs of topological charges. The sums or differences of the even and odd quarks
form standard vortex or non-vortex beams with the topological charges of integer order.
All the quarks in the same beam annihilate and the beam vanishes. All possible
combinations of even and odd optical quarks with different charges were analized. What
provided an opportunity to explore what interactions correspond to their “sum” and
“difference”.

References

1. Basisty, M. Soskin and M. Vasnetsov, Opt. Commun. 119, 604 (1995).

M. V. Berry, J. Opt. A. 6,259 (2004).

Alexander V. Volyar, Ukr. J. Phys. Opt. 14, 31 (2013).

J. Leach, E. Yao and M. J. Padgett, New J. Phys. 6, 71 (2004).

Garcia J. Gutierrez-Vega, J. Opt. Soc. Amer. A 26, 794 (2009).

T. Fadeyeva, C. Alexeyev, A. Rubass and A. Volyar, Opt. Lett. 37, 1397 (2012).

J. Gotte, S. Franke-Arnold, R. Zambrini and S. M. Barnett, J. Mod. Opt. 54, 1723 (2007).

Nk~

Eropos 10. O. Anredpa ontuueckux kBapkos / FO. O. Eropos, B. JI. Konosaienko, O. B. Boasp //
Bueni 3amuckm Tapificbkoro HamioHanepHOTO yHiBepcuteTy imeHi B. I. Bepnancekoro. Cepis : ®i3uko-
MareMatuyHi Hayku. — 2014. — T. 27 (66), Ne 2. — C. 14-22.

Bys0 po3risiHYyTO HOBHMil THUII CHHI'YJSPHHUX IY4KiB, TaK 3BaHMX ONTHYHHX KBapKiB. JlaHi CHHTYJIAPHI IMy4YKH
BOJIOJIIOTH TOTIOJIOTIYHUM 3apA0M PIBHUM IOJIOBHHI IIJIOTO YKCIA, a TAKOK BOHH MAlOTh JOCUTH YHIKaJIbHI
ONITHYHI BJIACTMBOCTH. BCHOTO iCHye YOTHpH THITM ONTHYHUX KBApKiB: IApHi 1 HemapHi, 10 MAalOTh pi3HI
3HAKM TONOJIOTIYHMX 3apsaiB. [lomaBaHHS i BiJHIMaHHS MApHUX | HEMAPHUX ONTHYHHUX KBapKiB IPH3BOJIHUTH
JI0 CTBOPCHHSI CTAQHJAPTHOTO ITyYKa 3 TOMOJIOTIYHHMM 3apsioM piBHOMY IiloMy umciy. ByB mpoBenenuit
aHaJi3 BCIiX MOXKJIMBHAX KOMOIHAIliil MApHHUX 1 HEMapHUX ONTUYHUX KBApKIB 3 Pi3HUMH 3apsaaMu, IO Jaio
MOXIIUBICTB IOCTI/DKYBAaTH B3a€EMO/Iii ONTHYHMUX KBAPKiB K IPH MiJCYMOBYBaHHi, TaK 1 BiJHIMaHHI.

Knruogi cnosa: ontuaHMA BUXOP, APOOOBHUI TOMIOJIOTIIHAHN 3apsi.

Eropos 0. A. Aareopa ontuueckux kBapkoB / 0. A. Eropos, B. JI. KonoBanenko, A. B. Boasip //
VYuyensle 3anucku TaBpuueckoro HalpoHalbHOTO YHUBepcuTeTa nMeHu B. U. Bepuaackoro. Cepus : @usmko-
MaTemarudeckue Hayku. — 2014. — T. 27 (66), Ne 2. — C. 14-22.

Bb1 paccMOTpeH HOBBIM THUI CHHTYJSIPHBIX ITYYKOB, Ha3bIBACMBIX «ONTHYCCKHE KBapKu». JlaHHBIC
CHUHTYJISIPHBIC My4YKH OOJaJar0T TOMOJIOTHYESCKUM 3apsIOM PaBHBIM IOJIOBHHE IIEJIOTO YHCNA, TaKKE OHHU
00TamaloT JIOCTAaTOYHO YHUKAIGHBIMH ONTHYECKMMH CBOHCTBaMH. Bcero cymiecTByeT dYeTblpe THIa
ONITUYECKHUX KBApPKOB: YETHBIC M HEUETHBIE, MMEIOIINE Pa3HbIE 3HAKU TOMOJOTHYEeCKnX 3apsaaoB. CloxXeHne U
BBUNTAHHE YETHHIX W HEYETHBIX ONTHYECKUX KBAPKOB TPHUBOAWT K CO3JAHMIO CTAaHJAPTHOTO IydYKa C
TOTIOJIOTHYECKUM 3apsiIOM PaBHOMY IeJIOMYy 4YHCTy. BbUT mpoBeneH aHanmn3 BceX BO3MOYKHBIX KOMOWHANWI
YETHBIX U HEUETHBIX ONTHYECKHUX KBAPKOB C PAa3HBIMH 3apsjiaMH, YTO JAJI0 BO3MOXHOCTH HCCIIEOBATh
B3aUMOJICHCTBHS ONITHYCCKUX KBAPKOB MIPH CYMMHPOBAHUH U MPH UX BHIYATAHUH.

Knrouesvle cnosa: ontuyecKuii BUXpb, ApOOHBIH TOMOJIOTUYECKUIT 3apsia.
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