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SMALL MOTIONS AND EIGENOSCILLATIONS OF A
SYSTEM „FLUID – GAS” IN A BOUNDED REGION1

1. Introduction.

1.1. To the history of the problem. The problem on small motions of an ideal fluid
in a partially filled vessel was a subject of numerous investigations at the second half of
the 20th century. We mention here only monographs [1] – [4] corresponding to the case
when a fluid is heavy and monographs [5] – [7] for the so-called capillary fluid, i.e., a
fluid that moves under action not only gravity but surface tension on a free surface (zero
– gravity conditions).

For capillary fluid static problems were studied in the first parts of monographs [5] –
[7]. Small motions and eigen oscillations were considered in the second parts of [5] –
[7] and in monographs [8] – [10]. Here authors used methods of functional analysis,
the theory of differential equations in Hilbert space, spectral theory of operators and
operator functions.

In the paper, we study a new class of problems where immovable container not par-
tially filled by an incompressible fluid or the system of incompressible ones but the case
when the first fluid is incompressible ideal and the second one is a barotropic gas. The
first papers on this topics are published in works [11] – [16] and [17] – [20].

This paper is written on the base of Chapter 1 of phD – thesis [21] where a heavy ideal
fluid and a gas was considered. Here we use the operator approach which is discribed in
detail in [8] – [9] for the case of one ideal incompressible capillary fluid or for the case
of a system of such fluids.

1.2. Main results of the paper. In Section 2, we formulate the statement of the prob-
lem on small motions and eigenoscillations of a system „ideal incompressible capillary
fluid – gas”. We consider preliminary an equilibrium state of the system and discribe
the main parameters of the problem, in particular, parameters connected with surface
tension and barotropic gas.

1The first author of the paper is gratefull to prof. V.A. Solonnikov for invitation to Ferrara
University (Italy) at June, 2004, for joint collaborations.
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After that we formulate the statement of the initial boundary value problem on small
motions of a system „fluid – gas” (see (8) – (15)). We derive the law of full energy
balance for classic solution of this problem (see (20)). The next step is connected with
using method of orthogonal projecting of vector equations of the problem on subspaces
of the spaces ~L2(Ω1) and ~L2(Ω2) for vector functions described displacement fields of
a fluid and a gas. It gives us some trivial relations (see (31), (32), (41)) and nontrivial
equations (see (33), (40) and boundary conditions) in subspaces of the spaces ~L2(Ω1)
and ~L2(Ω2). This approach allows us to reformulate the initial boundary value problem
(8) – (15) in a new form (see (55) – (61)) for finding of two scalar functions: displacement
potentials Φ1 and Φ2 for a fluid and a gas.

We formulate also the problem on eigenoscillations of the system, i.e., on finding solu-
tions of homogeneous problem depending in time t according to the law exp(iωt) where
ω is a frequency of oscillations. Then spectral problem (63) – (68) arises with spectral
parameter λ = ω2. The statement of this problem contains the potential energy operator
Bσ (see (51) and Lemma 1), and we suppose that investigated system is statically stable
in linear approximation, i.e., the operator Bσ is positive definite (see (69)).

In Section 3, we investigate the problem on eigenoscillations on the base of auxiliary
boundary value problems and corresponding Hilbert spaces and its equipments. We
introduce the operators of these problems (Subsection 3.1) and transit to matrix operator
equation (or the system of two operator equations) in orthogonal sum of Hilbert spaces
(see (101), (102) and (107) – (109)). We study properties of entries of these operator
matrices and on this base we prove the theorem on the structure of the spectrum and
properties of eigenfunctions (Theorem 2).

In Section 4, we consider variation principles for eigenvalues (Theorems 128 – 130) and
show that the variation principle in the form (165) is the most convenient in applications
when we use Ritz method for calculations of eigenvalues.

In Section 5, we investigate the orthogonal basis properties of eigenfunctions and
prove that these functions form an orthogonal basis in some Hilbert space (Theorems
6, 7). On the base of variation principles we consider also some limit cases (Subsection
5.3) connected with transit to one incompressible fluid (without of a gas), to the case,
when a gas transforms to an ideal incompressible fluid, or to the case, when only one
barotropic gas fills all the region. At last, we consider briefly the problem on surface and
acoustic waves arising in our system „fluid – gas” (Subsection 5.4).

Section 6 is devoted to investigation on the problem of existence of strong (according
to variable t) solutions to the initial boundary value problems in a vector and in a
scalar forms (see (8) – (15) and (55) – (61)). We prove that our problem is reduced to
investigation of Cauchy problem for some hyperbolic equation in Hilbert space. As a
result, we prove the theorem on strong solvability of the initial boundary value problem
for operator equation in orthogonal sum of Hilbert spaces (see (208) – (211), Theorem
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9), for scalar problem (55) – (61) (Theorem 10) and for initial vector boundary value
problem (8) – (15) (Theorem 11). At last, for strong and generalized solutions to these
problem we prove the law of full energy balance (Theorem 12).

Further, using basis properties of eigenfunctions, we represent a strong (and formal)
solution to problem (55) – (61) by Fourier series on eigenfunctions of the spectral problem
(63) – (68) (Subsection 6.4).

If condition of the static stability in linear approximation is not fulfilled and instead
of property (69) the operator Bσ of potential energy is only bounded from below with
lower bound negative then considered system „fluid – gas” is unstabled. In Subsection
6.5 we prove (Theorems 13, 14) that in the case our system is dynamical unstable.

At last, in Subsection 6.6 we briefly consider a problem on small motions and
eigenoscillations of a system „fluid – gas” for the case when surface tension do not taken
into account, i.e., for a heavy fluid. This problem is considered more explicitly in work
[21].

2. The statement of the problem.

In this section, the mathematical statement of the initial boundary value problem on
small motions and eigenoscillations of a hydrosystem „fluid – gas” is formulated. We write
down the equations, boundary value and initial conditions. The transition from vector
problem to scalar one is realized. The corresponding spectral problem is also formulated.

2.1. Equations of the initial boundary value problem. Consider a hydrodynamical
system consisting of two nonmixing ideal fluids. The first of them is incompressible and
the second one is compressible that is a gas. We suppose that fluids fulfill an arbitrary
region Ω ∈ R3 and we will take into account gravitation forces with acceleration ~g and
surface tension. At equilibrium state a lower fluid is incompressible and has a constant
density ρ1 > 0 and upper compressible fluid (gas) has a density ρ2 < ρ1. The lower fluid
occupides a region Ω1 ⊂ Ω bounded by a part S1 of the rigid wall S := ∂Ω and by the
surface Γ which is an equilibrium one dividing a fluid and a gas. Respectively, a gas
occupies a region Ω2 = Ω\Ω1 bounded by the surface Γ and by a part S2 = S\S1 of the
rigid wall S.

We introduce the cartesian coordinate system Ox1x2x3 by such a way that ~g = −g ~e3,
where ~ei is an ort of the axis Oxi, i = 1, 2, 3.

At the equilibrium state pressures in a fluid and in a gas are changed along the vertical
axis Ox3 and have the form

Pi,0(x) = Pi,0(x3) = −ρigx3 + ci, in Ωi, i = 1, 2, (1)

where ci are constants. At the equilibrium surface Γ the Laplace condition for the jump
of pressures must be fulfilled:

P1,0 − P2,0 = −σ(k1 + k2) on Γ. (2)
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Here σ > 0 is a coefficient of surface tension on the boundary „fluid – gas”, k1 and k2

are the main curvatures of Γ. On the contour ∂Γ the condition of Dupre – Yung must
be valid:

σcosδ = σ1 − σ0, (3)

where δ is a wetting angle, 0 < δ < π, σ1 > 0 is a corresponding coefficient on the
boundary „fluid – rigid wall” and σ0 > 0 is a corresponding one on the boundary „gas –
rigid wall”.

We suppose that the volume V of the fluid is given, that is∫

Ω1

dΩ = V, (4)

and then conditions (1) – (4) allows us to find an equilibrium surface Γ and regions Ω1

and Ω2 (see, for instance, the monographs [5] – [7]).
Suppose that this static problem is solved and consider small motions of the hy-

drosystem near the equilibrium state. We introduce unknown functions ~wi(t, x), i = 1, 2,
x ∈ Ωi, which are displacements fields in a fluid and a gas, and dynamic pressures pi(t, x)
which are differences between full pressures Pi(t, x) and static ones Pi,0(x3).

Let ρ̃2(t, x) be a density of a moving gas. Then ρ̃2 = ρ2 + η(t, x), where η(t, x) is a
new anknown function. For barotropic gas we have (see, for instance, [22], pp. 299-300)

p2 =
(

dP2

dρ̃2

)

ρ̃2=ρ2

· η =: c2η, (5)

where c2 is a squared sound velocity. Therefore from the continuouty equation (with
velocity field ~u2 = ∂ ~w2/∂t),

∂ρ̃2

∂t
+ div

(
ρ̃2

∂ ~w2

∂t

)
= 0,

one can find after linearization the relation
∂

∂t

(
p2 + c2ρ2div ~w2

)
= 0. (6)

For ~w2(t, x) ≡ ~0 we must have p2(t, x) ≡ 0, and then from (6) we receive

p2 + c2ρ2div ~w2 = 0 in Ω2. (7)

(If c2 −→ ∞ then it follows from (7) that div ~w2 = 0, that is the second fluid becomes
incompressible.)

Let us write down equations, boundary value and initial conditions of the problem on
small motions of a hydrosystem „ideal fluid – gas”. With account of (7) we have

ρ1
∂2 ~w1

∂t2
+∇p1 = ρ1

~f, div ~w1 = 0 (in Ω1), (8)

ρ2
∂2 ~w2

∂t2
+∇p2 = ρ2

~f, p2 + c2ρ2 div ~w2 = 0 (in Ω2), (9)
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~w1 · ~n = 0 (on S1), ~w2 · ~n = 0 (on S2), (10)

~w1 · ~n = ~w2 · ~n =: ζ (on Γ),
∫

Γ

ζdΓ = 0, (11)

p1 − p2 = Lσζ := aσζ − σ∆Γζ (on Γ), (12)

aσ = aσ(x) := (ρ1 − ρ2)g cos(~n, ~e3)− σ(k2
1 + k2

2), x ∈ Γ, (13)

∂ζ

∂e
+ χζ = 0 (on ∂Γ), χ :=

kΓ − kScosδ
sin δ

, (14)

~wi(0, x) = ~wi
0(x),

∂ ~wi

∂t
(0, x) = ~wi

1(x), i = 1, 2. (15)

Here the first equations in (8) and (9) are the linearized Euler equations for dis-
placements fields ~wi and dynamic pressures pi; ~f = ~f(t, x) is a known function of an
additional external small field of mass forces: ~F = ~g + ~f ; ~n is an external unique normal
to Ω1; ζ = ζ(t, x) (x ∈ Γ) is a displacement (along the normal ~n) of a moving surface
Γ = Γ(t) in process of oscillations; ∆Γ is a Laplace – Beltrami operator, acting on Γ; aσ

is a known function that is defined by the equilibrium state; ~e is a unique normal vector
to ∂Γ in the plane tangential to Γ on ∂Γ; kΓ and kS are the curvatures of Γ and S in
a cross section of Γ and S by the plane that is perpendicular to ∂Γ. (One can see the
derivation of conditions (12) – (14) in [9], pp. 201 – 203.) The second condition in (8)
is a condition of incompressibility for the displacement field ~w1, the second condition
in (9) is a condition of compressibility for barotropic gas (see (7)). Conditions (10) are
so-called nonleaking conditions on the rigid wall S. The first condition (11) is a kine-
matic condition on Γ, and the second one in (11) is a condition of volume conservation
of the fluid. Condition (12) is a linearized condition for pressure jump on moving surface
Γ(t); the corresponding nonlinear condition has the same form as (2). Condition (14) is
a corollary of the fact, that wetting angle δ, 0 < δ < π, does not changed in process of
oscillations (see [9], p. 201 – 203).

Thus, the problem on small motions of a hydrosystem „fluid – gas” consist of finding
displacements fields ~wi(t, x) and pressures fields pi(t, x) from equations, boundary value
and initial conditions (8) – (15).

2.2. The law of full energy balance. We will derive, on the base of equations, bound-
ary value and initial conditions of problem (8) – (15), the law of full energy balance for
investigated hydrodynamical system. This system is conservative, then, if additional
external forces are absent (~f(t, x) ≡ ~0), it will be the law of full energy conservation.

Suppose that problem (8) – (15) has a classical solution, that is, all unknown functions
and its derivatives that are located in equations, boundary value and initial conditions,
are continuous functions.
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From the first equation (8) and with account of the second one and the first condition
(10) we have

ρ1

∫

Ω1

∂2 ~w1

∂t2
· ∂ ~w1

∂t
dΩ1 =

d

dt


1

2
ρ1

∫

Ω1

∣∣∣∣
∂ ~w1

∂t

∣∣∣∣
2

dΩ1


 = −

∫

Ω1

∇p1 · ∂ ~w1

∂t
dΩ1+

+ρ1

∫

Ω1

~f · ∂ ~w1

∂t
dΩ1 = −

∫

Ω1

div
(

p1
∂ ~w1

∂t

)
dΩ1 + ρ1

∫

Ω1

~f · ∂ ~w1

∂t
dΩ1 =

= −
∫

∂Ω1

p1
∂ ~w1

∂t
· ~n dS + ρ1

∫

Ω1

~f · ∂ ~w1

∂t
dΩ1 = −

∫

Γ

p1
∂ ~w1

∂t
· ~n dΓ + ρ1

∫

Ω1

~f · ∂ ~w1

∂t
dΩ1.

From the first equation (9) with account of the second one and the second condition
(10) we derive analogously

ρ2

∫

Ω2

∂2 ~w2

∂t2
· ∂ ~w2

∂t
dΩ2 =

d

dt


1

2
ρ2

∫

Ω2

∣∣∣∣
∂ ~w2

∂t

∣∣∣∣
2

dΩ2


 = −

∫

Ω2

∇p2 · ∂ ~w2

∂t
dΩ2+

+ρ2

∫

Ω2

~f · ∂ ~w2

∂t
dΩ2 = −

∫

Ω2

div
(

p2
∂ ~w2

∂t

)
dΩ2 − 1

ρ2c2

∫

Ω2

p2 · ∂p2

∂t
dΩ2+

+ρ2

∫

Ω2

~f · ∂ ~w2

∂t
dΩ2 =

∫

Γ

p2
∂ ~w2

∂t
· ~n dΓ− 1

2ρ2c2

d

dt

∫

Ω2

|p2|2 dΩ2 + ρ2

∫

Ω2

~f · ∂ ~w2

∂t
dΩ2.

Adding the left and the right hand sides of these identities we receive the identity

d

dt





1
2
ρ1

∫

Ω1

∣∣∣∣
∂ ~w1

∂t

∣∣∣∣
2

dΩ1 +
1
2
ρ2

∫

Ω2

∣∣∣∣
∂ ~w2

∂t

∣∣∣∣
2

dΩ2 +
1

2ρ2c2

∫

Ω2

|p2|2 dΩ2



+

+
∫

Γ

(p1 − p2)
∂ζ

∂t
dΓ =

2∑

k=1

ρk

∫

Ωk

~f · ∂ ~wk

∂t
dΩk. (16)

We use now the First Green’s Formula for Laplace – Beltrami operator (see, for
instance, [23], p. 129, [24], p. 276):

−
∫

Γ

∆Γu · v dΓ =
∫

Γ

∇Γu · ∇Γv dΓ−
∫

∂Γ

∂u

∂e
v dS. (17)

Then from (12) – (14) we have
∫

Γ

(p1 − p2)
∂ζ

∂t
dΓ =

∫

Γ

(Lσζ)
∂ζ

∂t
dΓ =

1
2

d

dt
(ζ, ζ)Bσ , (18)

where
(ζ, ζ)Bσ :=

∫

Γ

[
σ |∇Γζ|2 + aσ |ζ|2

]
dΓ + σ

∮

∂Γ

χ |ζ|2 ds. (19)
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Therefore, it follows from (16) – (19) that the identity

1
2

2∑

k=1

ρk

∫

Ωk

∣∣∣∣
∂ ~wk

∂t
(t, x)

∣∣∣∣
2

dΩk +
1

2ρ2c2

∫

Ω2

|p2(t, x)|2 dΩ2 +
1
2

(ζ(t, x), ζ(t, x))Bσ
=

=
1
2

2∑

k=1

ρk

∫

Ωk

∣∣ ~wk
1(x)

∣∣2 dΩk +
1

2ρ2c2

∫

Ω2

|p2(0, x)|2 dΩ2 +
1
2

(ζ(0, x), ζ(0, x))Bσ
+

+
2∑

k=1

ρk

t∫

0




∫

Ωk

~f(t, x) · ∂ ~wk

∂t
(t, x) dΩk


 dt (20)

is valid. It is the law of full energy balance for considered hydrodynamical system. Note,
that here

p2(0, x) = −ρ2c
2div ~w2

0(x), ζ(0, x) = ( ~w1
0(x) · ~n) |Γ= ( ~w2

0(x) · ~n)Γ. (21)

The first term from the left hand side of (20) is a kinetic energy of the system, the
second and the fhird ones is a potential energy, consisting of the term for compressible
gas and the term for free surface and acting gravity and surface tension on it. From the
right hand side in (20) we have the sum of the full energy at the initial moment t = 0
and the work of an external force ~f(t, x) on the interval [0, t].

2.3. Using the method of orthogonal projecting. Transition to the problem
with scalar unknown function. For investigation of problem (8) – (15) we use the
method of orthogonal projecting (see, for instance, [9], Subsection 6.3.3). Introduce
Hilbert spaces ~L2(Ωi), i = 1, 2, with inner products

(~u,~v)Ωi :=
∫

Ωi

~u(x) · ~v(x)dΩi (22)

and corresponding norms. For the space ~L2(Ω1) (ideal incompressible fluid) we take into
consideration the following orthogonal decomposition (see [9], pp.117 – 118):

~L2(Ω1) = ~J0(Ω1)⊕ ~G0,Γ(Ω1)⊕ ~Gh,S1(Ω1), (23)

~J0(Ω1) :=
{
~v ∈ ~L2(Ω1) : div~v = 0 (in Ω1), ~v · ~n = 0 (on ∂Ω1)

}
, (24)

~G0,Γ(Ω1) :=
{
~u ∈ ~L2(Ω1) : ~u = ∇ϕ, ϕ = 0 (on Γ)

}
, (25)

~Gh,S1(Ω1) :=
{

~w ∈ ~L2(Ω1) : ~w = ∇Φ, ∆Φ = 0 ( in Ω1),

∂Φ
∂n

= 0 (on S1),
∫

Γ

Φ dΓ = 0



 . (26)
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It follows from (8) and (10) that if ~w1(t, x) is a function in variable t with values from
~L2(Ω1) then

~w1(t, x) = ~v1(t, x) +∇Φ1(t, x) ∈ ~J0(Ω1)⊕ ~Gh,S1(Ω1), (27)

~v1(t, x) ∈ ~J0(Ω1), ∇Φ1(t, x) ∈ ~Gh,S1(Ω1). (28)

If ∇p1(t, x) is a function in t with values from ~L2(Ω1) then

∇p1(t, x) = ∇p̃1(t, x) +∇ϕ1(t, x) ∈ ~Gh,S1(Ω1)⊕ ~G0,Γ(Ω1), (29)

∇p̃1(t, x) ∈ ~Gh,S1(Ω1), ∇ϕ1(t, x) ∈ ~G0,Γ(Ω1). (30)

Let P1,0, P1,0,Γ and P1,h,S1 be the orthoprojections on the subspaces (23), respectively.
If we will use representations (27) and (29) in the first equation (8) and will act by these
projections from the left, we will have relations

ρ1
∂2~v1

∂t2
= ρ1P1,0

~f, ~v1(0, x) = P1,0 ~w0
1,

∂~v1

∂t
(0, x) = P1,0 ~w1

1; (31)

~0 +∇ϕ1 = ρ1P1,0,Γ
~f ; (32)

ρ1
∂2

∂t2
∇Φ1 +∇p̃1 = ρ1P1,h,S1

~f =: ρ1∇F1. (33)

It is evident that fields ~v1 and ∇ϕ1 can be finded immediately from (31) and (32).
Therefore in further we must study only equation (33) and other equations and boundary
conditions.

Consider now ~L2(Ω2) and its decomposition

~L2(Ω2) = ~G(Ω2)⊕ ~J0(Ω2), (34)

~G(Ω2) :=



~w ∈ ~L2(Ω2) : ~w = ∇Φ,

∫

Ω2

Φ dΩ2 = 0



 , (35)

~J0(Ω2) :=
{
~v ∈ ~L2(Ω2) : div~v = 0 (in Ω2), ~v · ~n = 0 (on ∂Ω2)

}
. (36)

(Here and in (23) – (26) operations div~v and (~v · ~n)Γ are understood in sense of distri-
butions, see, for instance, [9], pp. 111 – 114.)

If ~w2(t, x) and ∇p2(t, x) are functions in t with values in ~L2(Ω2) then

~w2(t, x) = ~v2(t, x) +∇Φ2(t, x), (37)

~v2(t, x) ∈ ~J0(Ω2), ∇Φ2(t, x) ∈ ~G(Ω2), ∇p2(t, x) ∈ ~G(Ω2). (38)

Indeed, it follows from the second equation (9) and from (11) that
∫

Ω2

p2 dΩ2 = −ρ2c
2

∫

Ω2

div ~w2 dΩ2 = −ρ2c
2

∫

Γ

~w2 · ~n dΓ = −ρ2c
2

∫

Γ

ζ dΓ = 0. (39)
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Introduce the orthoprojections P2,G and P2,0 on subspaces (34). Then, acting by these
orthoprojections from the left in (9) and using (37), (38), we will have relations

ρ2
∂2

∂t2
∇Φ2 +∇p2 = ρ2P2,G

~f =: ρ2∇F2, (40)

ρ2
∂2~v2

∂t2
= ρ2P2,0

~f, ~v2(0, x) = P2,0 ~w0
2,

∂

∂t
~v2(0, x) = P2,0 ~w1

2. (41)

It is evident that ~v2(t, x) is defined uniquelly from problem (41), and therefore in
further we must study equation (40) and others.

Let us transform boundary conditions (10) – (14) with taking into account (27), (29)
and (26), (34), (35), (38). First of all, instead of (10) we have now conditions

∂Φ1

∂n
= 0 (on S1),

∂Φ2

∂n
= 0 (on S2), (42)

and conditions (11) have the form

∂Φ1

∂n
=

∂Φ2

∂n
=: ζ (on Γ),

∫

Γ

ζ dΓ = 0. (43)

Further, it follows from (33) and (40) that

ρi
∂2Φi

∂t2
+ pi = ρiFi + ci(t) (in Ωi, i = 1, 2), (44)

where ci(t) are arbitrary functions in t. But from (39) and corresponding conditions for
Φ2 and F2 (see (35)) we conclude, that c2(t) ≡ 0. Then condition (12) can be rewritten
in the form

ρ1
∂2Φ1

∂t2
− ρ2

∂2Φ2

∂t2
+ Lσζ = ρ1F1 − ρ2F2 + c1(t) (on Γ). (45)

Introduce Hilbert space L2(Γ) with ordinary scalar product

(ζ, η)0 :=
∫

Γ

ζ(x)η(x) dΓ. (46)

Then the last condition (11) can be written as
∫

Γ

ζ dΓ = (ζ, 1Γ)0 = 0, (47)

where 1Γ is a unique function defined on Γ. It means that

ζ ∈ L2,Γ := L2(Γ)ª {1Γ}. (48)

Let PΓ be the orthoprojection from L2(Γ) onto L2,Γ that is

PΓη := η − |Γ|−1
∫

Γ

η dΓ, ∀η ∈ L2. (49)
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Then PΓζ = ζ (see (47)), and acting by the operator PΓ from the left in (45), we will
have the condition

ρ1
∂2Φ1

∂t2
− ρ2

∂2

∂t2
(PΓΦ2) + Bσζ = ρ1F1 − ρ2PΓF2 (on Γ). (50)

We took into account in (50) that conditions
∫

Γ

Φ1 dΓ =
∫

Γ

F1 dΓ = 0

hold, see (26). By definition, the operator Bσ is defined by the law

Bσ := PΓLσPΓ, D(Bσ) = D(Lσ) ⊂ L2,Γ. (51)

Lemma 1. The operator Bσ with the domain

D(Bσ) :=
{

ζ ∈ H2(Γ) ∩ L2,Γ :
∂ζ

∂e
+ χζ = 0 (on ∂Γ)

}
(52)

is bounded from below self–adjoint operator acting in the space L2,Γ. Its quadratic form
(see (19)) is

(Bσζ, ζ)0 = (ζ, ζ)Bσ
=

∫

Γ

[σ |∇Γζ|2 + a |ζ|2]dΓ +
∮

∂Γ

χ |ζ|2 dΓ (53)

and there exists γ ∈ R such that

(ζ, ζ)Bσ
> γ ‖ζ‖2

0 , ∀ ζ ∈ D(Bσ). (54)

These properties are valid for sufficiently smooth ∂Γ.

Proof. of the lemma is done in [9], p. 205. ¤

Transform now the second condition in (9). By (44), (35),(38),

p2 = −ρ2
∂2Φ2

∂t2
+ ρ2F2, (c2(t) ≡ 0), div ~w2 = ∆Φ2.

Therefore for unknown function Φ2(t, x) we have the equation

∂2Φ2

∂t2
= c2∆Φ2 + F2 (in Ω2),

and unknown function Φ1(t, x) is a harmonic one:

∆Φ1 = 0 (in Ω1).

We can now formulate the statement of the initial boundary value problem for un-
known scalar function Φi(t, x), i = 1, 2:

∆Φ1 = 0 (in Ω1), (55)

∂2Φ2

∂t2
= c2∆Φ2 + F2(t, x) (in Ω2), (56)
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∂Φ1

∂n
= 0 (on S1),

∂Φ2

∂n
= 0 (on S2), (57)

∂Φ1

∂n
=

∂Φ2

∂n
=: ζ (on Γ),

∫

Γ

ζdΓ = 0, (58)

ρ1
∂2Φ1

∂t2
− ρ2

∂2

∂t2
(PΓΦ2) + Bσζ = ρ1F1 − ρ2PΓF2 (on Γ), (59)

∇Φ1(0, x) = ∇Φ0
1(x) = Ph,S1 ~w0

1(x), ∇Φ2(0, x) = ∇Φ0
2(x) = PG ~w0

2(x), (60)
∂

∂t
∇Φ1(0, x) = ∇Φ1

1(x) = Ph,S1 ~w1
1(x),

∂

∂t
∇Φ2(0, x) = ∇Φ1

2(x) = PG ~w1
2(x). (61)

Initial boundary value problem (55) – (61) has the following peculiarity: the second
derivatives with respect to t are located both in equation (56) and in boundary condition
(59).

2.4. The problem on eigenoscillations. Consider eigenoscillations of the hydrosys-
tem „fluid - gas”, that is, solutions to the homogeneous problem (55) – (61) such that its
change in t by the law exp(iωt) where ω is a frequency of eigenoscillations.

If ~f(t, x) ≡ ~0, then F1(t, x) ≡ 0, F2(t, x) ≡ 0. We set

Φi(t, x) = exp(iωt)Φi(x), i = 1, 2, (62)

where Φi(x) are so called amplitude functions. From (55) – (61) we have the following
spectral problem for these functions:

∆Φ1 = 0 (in Ω1), (63)

−∆Φ2 = λc−2Φ2 (in Ω2), λ := ω2, (64)
∂Φ1

∂n
= 0 (on S1),

∂Φ2

∂n
= 0 (on S2), (65)

∂Φ1

∂n
=

∂Φ2

∂n
=: ζ (on Γ), (66)

Bσζ = λ (ρ1Φ1 − ρ2PΓΦ2) (on Γ). (67)∫

Γ

ζ dΓ = 0, λ

∫

Ω2

Φ2 dΩ2 = 0. (68)

Here λ is a spectral parameter of the problem, Φ1(x) and Φ2(x) are unknown am-
plitude functions. We see that spectral parameter λ enters as in equation (64) as in
boundary condition (67). The operator Bσ is defined by (51), (52) and has properties
(53), (54) (see Lemma 1). The last relation in (68) is a corollary of equations (64) – (66)
and the first relation (68):∫

Γ2

(−∆Φ2) dΩ2 = λc−2

∫

Ω2

Φ2 dΩ2 =
∫

Ω2

∇Φ2 · ∇1 dΩ2 −
∫

∂Ω2

∂Φ2

∂n2
· 1 dS =

=
∫

Γ

∂Φ2

∂n
dΓ =

∫

Γ

ζ dΓ = 0.
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Definition 1. We say that the investigated hydrosystem is statically stable in linear
approximation if the operator Bσ is positive definite (Bσ À 0), that is,

(Bσζ, ζ)0 > c ‖ζ‖2
0 , c > 0, ζ ∈ D(Bσ). ¤ (69)

If inequality (69) holds then one can introduce the energetic space HBσ of the operator
Bσ (see, for instance, [25]), i.e., the set of elements ζ ∈ L2,Γ such that the norm ‖ζ‖2

Bσ
<

∞.

Lemma 2. The energetic norm

‖ζ‖2
Bσ

:=
∫

Γ

[σ |∇Γζ|2 + a |ζ|2]dΓ +
∮

∂Γ

χ |ζ|2 ds

is equivalent to the norm

‖ζ‖2
∇ :=

∫

Γ

|∇Γζ|2 dΓ,

∫

Γ

ζ dΓ = 0,

and this norm is equivalent to standart norm

‖ζ‖2
1,Γ :=

∫

Γ

[|∇Γζ|2 + |ζ|2]dΓ

of the space H1(Γ).

Proof. See [9], p.206. ¤

It follows from Lemma 2 and embedding theorem (H1(Γ) is compact embedded in
L2(Γ)) that the operator Bσ(À 0) has a discrete positive spectrum consisting of finite-
multiple eigenvalues {λk(Bσ)}∞k=1 with limit point λ = +∞. The system of eigenelements
of the operator Bσ forms an orthogonal basis in L2,Γ and HBσ = H1(Γ)∩L2,Γ = D(B1/2

σ ).
Further, the inverse operator B−1

σ is compact and positive in the space L2,Γ.
Let’s derive preliminary some simple properties of solutions to spectral problem (63)

– (68).
If condition (69) holds then we can find engenvalue λ, corresponding to solution

{Φ1(x),Φ2(x)}, calculating the values of the functional

F1(Φ1; Φ2) :=

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

ρ2c−2

∫

Ω2

| Φ2 |2 dΩ2 +
∥∥∥B−1/2

σ PΓ(ρ1Φ1 − ρ2Φ2)
∥∥∥

2

0

. (70)

It follows from (70) that λ = F1(Φ1; Φ2) > 0, that is, frequencies of oscillations
ω = ±

√
λ are real numbers. This fact is evident physically because the investigated

hydrosystem is conservative (not dissipative).
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Functional (70) can be find for solutions of spectral problem (63) – (68) by the follow-
ing way. We multiply the both part of equations (63), (64) on ρiΦi and integrate over Ωi;
further we use the First Green’s Formula for Laplace operator, boundary conditions (65)
– (66) and summize these identities. Since the operator Bσ is positive definite (Bσ À 0)
then it has positive inverse operator B−1

σ and condition (67) can be rewritten in the
form

ζ = λB−1
σ PΓ(ρ1Φ1 − ρ2Φ2) (on Γ). (71)

(Remind that
∫
Γ Φ1 dΓ = 0 and therefore PΓΦ1 = Φ1, see (26).) Therefore

(B−1
σ PΓ(ρ1Φ1 − ρ2Φ2), (ρ1Φ1 − ρ2Φ2))0 = (72)

= ((B−1
σ PΓ(ρ1Φ1 − ρ2Φ2), PΓ(ρ1Φ1 − ρ2Φ2))0 =

∥∥∥B−1/2
σ PΓ(ρ1Φ1 − ρ2Φ2)

∥∥∥
2

0
.

3. Operator approach to investigation of the spectral problem.

In this section, for investigation of spectral problem (63) – (68) we use an operator
approach which is based on introduction of auxiliary boundary value problems and its
operators and on transition from (63) – (68) to the spectral problem for some operator
equation in Hilbert space.

3.1. Auxiliary boundary value problems. Consider auxiliary boundary value prob-
lems directly connected with spectral problem (63) – (68).

We introduce preliminary the following necessary in further Hilbert spaces of scalar
functions.

10. The spaces L2(Ωi) with inner product

(u, v)Ωi :=
∫

Ωi

u(x)v(x) dΩi, i = 1, 2. (73)

20. The space L2(Γ) with inner products

(ϕ, ψ)0 :=
∫

Γ

ϕ(x)ψ(x) dΓ. (74)

30. The space H1(Ω1) with the norm

‖u‖2
1,Ω1

:=
∫

Ω1

|∇u|2 dΩ1 +

∣∣∣∣∣∣

∫

Γ

u dΓ

∣∣∣∣∣∣

2

, (75)

that is equivalent to the standart norm of Sobolev space W 1
2 (Ω1).

40. The space H1(Ω2) with the norm

‖u‖2
1,Ω2

:=
∫

Ω2

|∇u|2 dΩ2 +

∣∣∣∣∣∣

∫

Ω2

u dΩ2

∣∣∣∣∣∣

2

, (76)
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that is equivalent to the standart norm of Sobolev space W 1
2 (Ω2).

50. The space

H = H0 := L2(Γ)ª {1Γ} = L2,Γ, (77)

where 1Γ is the function that is equal to 1 on Γ. We consider also the equipment (see
[26], Section 1.1; and also [9])

H+ ⊂ H0 ⊂ H−, (78)

where

H+ = W
1/2
2 (Γ) ∩H0, H0 = (H+)∗, (79)

that is H− is a dual space to H+ (in inner product of the space H0). Namely, if u ∈ H+

and v ∈ H−, then linear bounded functional lv(u) has the norm lv(u) := 〈u, v〉0 and

|lv(u)| 6 ‖u‖+ · ‖v‖− . (80)

Here 〈u, v〉0 is an extention by continuity of the inner product (u, v)0 on the case when
u ∈ H+, v ∈ H−.

In this paper, we will consider that regions Ω1 and Ω2 are lipshitsian domains, in
particularly, its can be piecewise smooth domains with nonzero inner and outer dihedral
angles between smooth parts of ∂Ωi, i = 1, 2.

We will denote by H1
Ωi
⊂ H1(Ωi), i = 1, 2, the subspaces of spaces with norms (75)

and (76) such that the conditions
∫

Γ

u dΓ = 0,

∫

Ω2

u dΩ2 = 0 (81)

are valid for elements of H1(Ω1) and H1(Ω2), respectively. Then, by (75) and (76), we
will have

‖u‖2
1,Ωi

=
∫

Ωi

|∇u|2 dΩi, i = 1, 2, u ∈ H1
Ωi

, (82)

that is, squared norms are equal to Dirichlet integral.
Consider, on the base of introduced spaces, the following auxiliary boundary value

problems.

Problem 1. For known function ζ(x), x ∈ Γ, find generalized solution Φ1(x) to the
problem

∆Φ1(x) = 0 (in Ω1),
∂Φ1

∂n
= 0 (on S1), (83)

∂Φ1

∂n
= ζ (on Γ),

∫

Γ

ζ dΓ = 0,

∫

Γ

Φ1 dΓ = 0. ¤
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Definition 2. A function Φ1(x) ∈ H1
Ω1

is said to be a weak solution to Problem 1 if the
identity

(Ψ,Φ1)1,Ω1
= 〈γ1Ψ, ζ〉0 (84)

is valid for any Ψ ∈ H1
Ω1
. Here γ1 : H1

Ω1
−→ H0 is a trace operator, i.e.,

γ1 (Ψ |Ω1) := Ψ |Γ . ¤ (85)

It follows from the First Green’s Formula for Laplace operator (and domain Ω1) that
a classical solution to Problem 1 is a weak one.

It is known (see, for instance, [9], pp. 105 – 106) that Problem 1 has a unique weak
solution Φ1 ∈ H1

Ω1
, Φ1 = T1ζ, if and only if

ζ ∈ H− = (H+)∗ = {ζ ∈ W
−1/2
2 (Γ) :

∫

Γ

ζ dΓ = 0}. (86)

Here T1 : H− −→ H1
Ω1

is a linear bounded operator with bounded inverse on the image
R(T1) ⊂ H1

Ω1
of the operator T1.

Problem 2. For known function ζ(x), x ∈ Γ, find weak solution Φ22(x) to the problem

∆Φ22 = 0 (in Ω2),
∂Φ22

∂n
= 0 (on S2), (87)

∂Φ22

∂n
= −ζ (on Γ),

∫

Γ

ζ dΓ = 0,

∫

Ω2

Φ22 dΩ2 = 0. ¤

Definition 3. A function Φ22(x) ∈ H1
Ω2

is said to be a weak solution to Problem 2 if
the identity

(Ψ, Φ22)1,Ω2
= −〈γ2Ψ, ζ〉0 (88)

is valid for any Ψ ∈ H1
Ω2
. Here γ2 : H1

Ω2
−→ H0 is a trace operator. ¤

It follows from the First Green’s Formula for Laplace operator ( and domain Ω2) that
a classical solution to Problem 2 is a weak one.

Problem 2 (as Problem 1) has a unique weak solution Φ22 ∈ H1
Ω2

if and only if
condition (86) is valid (see once more, for instance, [9], pp. 105 – 106). Then

Φ22 = T2ζ, T2 : H− −→ H1
Ω2

, (89)

T2 is a bounded linear operator with bounded inverse on the image R(T2) ⊂ H1
Ω2
.

Problem 3. For known function f(x), x ∈ Ω2, find weak solution Φ21(x) to the problem

−∆Φ21 = f (in Ω2),
∂Φ21

∂n
= 0 (on S2),

∂Φ21

∂n
= 0 (on Γ), (90)

∫

Ω2

f dΩ2 = 0,

∫

Ω2

Φ21 dΩ2 = 0. ¤



18 N. D. Kopachevsky, M. Padula, B. M. Vronsky

Definition 4. A function Φ21 ∈ H1
Ω2

is said to be a weak solution to Problem 3 if the
identity

(Ψ, Φ21)1,Ω2
= 〈Ψ, f〉Ω2 (91)

holds for an Ψ ∈ H1
Ω2
. ¤

By 〈u, v〉Ω2 we denote here the linear bounded functional for u ∈ H1
Ω2

and v ∈ (H1
Ω2

)∗.
We use here the equipment

H1
Ω2
⊂ L2,Ω2 ⊂ (H1

Ω2
)∗, L2,Ω2 = L2(Ω2)ª {1Ω2}. (92)

It follows from the First Green’s Formula for laplace operator ( and domain Ω2) that
a classical solution to Problem 3 is a weak one.

Problem 3 has a unique weak solution Φ21 ∈ H1
Ω2

if and only if (see [9], pp. 97)

f(x) ∈ (H1
Ω2

)∗. (93)

Then
Φ21 = A−1f, A−1 : (H1

Ω2
)∗ −→ H1

Ω2
, A : H1

Ω2
−→ (H1

Ω2
)∗. (94)

It is known (see, for instance, [9]), that the restriction of A, such that R(A) = L2,Ω2 ,
is a selfadjoint positive definite operator with compact inverse operator, i.e., A−1 :
L2,Ω2 −→ L2,Ω2 , A−1 ∈ S∞(L2,Ω2). The operator A : D(A) ⊂ L2,Ω2 −→ L2,Ω2 has a
discrete spectrum {λk(A)}∞k=1 ⊂ R+ and

λk(A) =
( | Ω2 |

6π2

)−2/3

k2/3[1 + o(1)], k −→∞, Ω2 ⊂ R3. (95)

From this it follows that the operator A−1 belongs to the class of compact operators
Sp for p > 3/2. We have also the properties

D(A) ⊂ H1
Ω2

, D(A1/2) = H1
Ω2

, A : D(A) ⊂ L2,Ω2 −→ L2,Ω2 . (96)

3.2. Transition to the operator problem in some Hilbert space. Consider spec-
tral problem (63) – (68) and suppose that Φ1(x) is a weak solution to auxiliary Problem
1. Then

Φ1 |Ω1= T1ζ, γ1Φ1 = γ1T1ζ =: C1ζ. (97)

We represent Φ2(x) in the form

Φ2(x) = Φ21(x) + Φ22(x), (98)

where Φ22(x) is a weak solution to auxiliary Problem 2 and Φ21(x) is a weak solution
to auxiliary Problem 3 for f = λc−2Φ2. Then

Φ21 |Ω2= A−1(λc−2Φ2), Φ22 |Ω2= T2ζ, γ2Φ22 = γ2T2ζ =: −C2ζ. (99)

For simplicity we denote
Φ21 |Ω2=: η(x). (100)
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With account of (97) – (100) we can rewrite equations and boundary conditions (63)
– (68) in the form

Aη = λc−2 (η + T2ζ) , η ∈ D(A), (101)

Bσζ = λ (−ρ2PΓγ2η + PΓ(ρ1C1 + ρ2C2)) , ζ ∈ D(Bσ). (102)

Introduce the Hilbert space

H(Ω) := L2,Ω2 ⊕H0, L2,Ω2 := L2(Ω2)ª {1Ω2} , (103)

for elements of the form z = (η; ζ)t (by symbol (· ; ·)t we denote the operation of trans-
forming) with the norm

‖z‖2
H := ‖η‖2

L2,Ω2
+ ‖ζ‖2

0 . (104)

We will consider that
η ∈ D(A) ⊂ H1

Ω2
⊂ L2,Ω2 , (105)

and introduce new anknown elements

ψ := c
√

ρ2Aη, ϕ := B1/2
σ ζ, (106)

in (101). Then instead of (101) we will have a spectral problem

y = λAy, y ∈ H(Ω), (107)

where

A :=

(
c−2A−1 ρ

1/2
2 c−1A−1/2(A1/2T2)B

−1/2
σ

−ρ
1/2
2 c−1B

−1/2
σ PΓ(γ2A

−1/2)A−1/2 B
−1/2
σ CB

−1/2
σ

)
, (108)

C := PΓ(ρ1C1 + ρ2C2)PΓ, y := (ψ; ϕ)t. (109)

These transforms show us that an initial spectral problem (63) – (68) is equivalent
to problem (107) – (109) on finding of characteristic numbers λ and eigenelements y for
the operator matrix A that acting in orthogonal sum of Hilbert spaces (103).

3.3. The solutions properties of spectral problem. Before investigation of solu-
tions properties of problem (107) we will study properties of the operator matrix A from
(108).

It will be shown that all elements of the matrix A are not only bounded but compact
operators also and therefore D(A) = H(Ω).

Introduce in the space H− (see (78), (79)) the norm in one of equivalent forms (see,
for instance, [9], pp. 101-103):

‖ζ‖2
H− := ρ1

∫

Ω1

|∇Φ1|2 dΩ1 + ρ2

∫

Ω2

|∇Φ22|2 dΩ2, (110)

where Φ1 and Φ22 are generalized solutions to auxiliary problems 1 and 2.
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Lemma 3. The operator C = PΓ(ρ1C1+ρ2C2)PΓ : H0 −→ H0 is a positive and compact
operator. Its extension on H− ⊃ H0 is an isometric operator mapping H− onto H+. In
this, D(C−1/2) = H+, and after extention D(C−1/2) = H0, R(C−1/2) = H−.

Proof. of the lemma see in [9], pp. 193 – 194. ¤

Lemma 4. The operator A1/2T2 : H0 −→ L2,Ω2 and −PΓ(γ2A
−1/2) : L2,Ω2 −→ H0 are

mutual adjoint compact operator.

Proof. We will use the identities (88) and (96). Namely, it follows form (88) that

(Ψ, Φ22)1,Ω2
=

(
A1/2Ψ, A1/2Φ22

)
Ω2

= −〈γ2Ψ, ζ〉0.

Since Φ22 = T2ζ then after substitution A1/2Ψ = v we receive from this (for ζ ∈ H0

we have 〈γ2Ψ, ζ〉0 = (γ2Ψ, ζ)0) the relation
(
A1/2T2ζ, v

)
Ω2

= −
(
ζ, γ2A

−1/2
2 v

)
0

= −
(
PΓζ, γ2A

−1/2v
)

0
=

=
(
ζ,−PΓ(γ2A

−1/2v)
)

0
, ∀ v ∈ H0, ∀ v ∈ L2,Ω2 . (111)

Here we used the fact that the operator PΓ introduced according to the law (49) is
an orthoprojection, i.e.,

PΓ = P 2
Γ = P ∗

Γ : L2(Γ) −→ H0 = H = L2(Γ)ª {1Γ} . (112)

It follows from (111) that (A1/2T2)∗ = −PΓ(γ2A
−1/2) and both of these operators are

bounded. But the operator γ2A
−1/2 : L2,Ω2 −→ L2(Γ) is compact. Indeed, the operator

A−1/2 : L2,Ω2 −→ H1
Ω2

is bounded and the trace operator γ2 : H1
Ω2
−→ L2(Γ) (by trace

theorem of Gagliargo, see [27]) is compact. More precisely, γ2 is bounded from H1
Ω2

onto
the space H+ = W

1/2
2 (Γ) ∩H0 and H+ is compact embedded into H0. ¤

As a corollary of Lemmas 3 and 4 we have the following assertion.

Lemma 5. Matrix operator A from (108) is a compact operator acting in H(Ω).

Proof. Remind that we used inequality (69) and therefore the operator Bσ has a bound-
ed inverse operator B

−1/2
σ , acting in H0. Therefore all entries in (108) are compact oper-

ators since A−1, A−1/2, A1/2T2, −PΓ(γ2)A−1/2 and C are compact operators, and B
−1/2
σ

is bounded. ¤

Theorem 1. Matrix operator A is positive selfadjoint compact operator acting in H(Ω).

Proof. By Lemmas 3 – 4, it is sufficient to check the property of positiveness of the
operator A.

For an arbitrary element y = (ψ;ϕ)t ∈ H(Ω) we consider he quadratic form of the
operator A. We have

(Ay, y)H(Ω) = c−1(A−1ψ,ψ)Ω2 + ρ
1/2
2 c−1(T2B

−1/2
σ ϕ, ψ)Ω2−
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−ρ
1/2
2 c−1(B−1/2

σ PΓγ2A
−1ψ, ϕ)0 + (CB−1/2

σ ϕ,B−1/2
σ ϕ)0. (113)

Taking into account substitutions (106) we have from (113)

(Ay, y)H(Ω) = ρ2(η, Aη)Ω2 + ρ2(T2ξ, Aη)Ω2 − ρ2(PΓγ2η, ζ)0 + (Cζ, ζ)0. (114)

Here

(Cζ, ζ)0 = ρ1(C1ζ, ζ)0 + ρ2(C2ζ, ζ)0 = ρ1(γ1T1ζ, ζ)0 − ρ2(γ2T2ζ, ζ)0. (115)

From this, using identities (84), (88) and denotations (97), (99), we have

(γ1T1ζ, ζ)0 = (γ1Φ1, ζ)0 = (Φ1, Φ1)1,Ω1 =
∫

Ω1

|∇Φ1|2 dΩ1, (116)

−(γ2T2ζ, ζ)0 =
∫

Ω2

|∇Φ22|2 dΩ2. (117)

Analogous considerations give us equalities

(η,Aη)Ω2 = (A1/2η,A1/2η)Ω2 = ‖Φ21‖2
1,Ω2

=
∫

Ω2

|∇Φ21|2 dΩ2, (118)

(T2ζ, Aη)Ω2 = (A1/2T2ζ, A1/2η)Ω2 = (Φ22, Φ21)1,Ω2 =
∫

Ω2

∇Φ22 · ∇Φ21 dΩ2, (119)

−(PΓγ2η, ζ)0 = −(γ2η, ζ)0 = (Φ21, Φ22)1,Ω2 =
∫

Ω2

∇Φ21 · ∇Φ22 dΩ2. (120)

It follows from (114) – (120) that

(Ay, y)H(Ω) = ρ1

∫

Ω1

|∇Φ1|2 dΩ1 + ρ2

∫

Ω2

|∇Φ2|2 dΩ2 > 0, (121)

where Φ2 = Φ21 +Φ22. Consequently, the operator A = A∗ > 0. If (Ay, y)H(Ω) = 0, then
from (121) we have Φ1(x) ≡ c1 = 0, Φ2(x) ≡ c2 = 0, and therefore the operator A is
positive. ¤

It follows from above that spectral problem (107) is equivalent to the eigenvalue
problem for compact positive operator A, i.e.,

Ay = µy, µ = λ−1, y ∈ H(Ω). (122)

From this and by Hilbert - Schmidt theorem we receive the final assertion on solutions
properties of the initial spectral problem (63) – (68).
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Theorem 2. 10. Spectral problem (63) – (68) has a discrete spectrum {λk}∞k=1 consist-
ing of finite - multiple eigenvalues λk, located on positive semiaxis R+ and having limit
point λ = +∞.

20. Eigenelements yk = ((Φ21)k; ζk)
t, k = 1, 2, . . ., form an orthogonal basis in Hilbert

space H(Ω) = L2,Ω2 ⊕H0.
30. Eigenvalues λk can be find as consecutive minima of functional F1(Φ1; Φ2) from

(70) or as consecutive minima of the functional

F2(Φ1; Φ2) =

c2ρ2

∫

Ω2

|∆Φ2|2 dΩ2 + (ζ, ζ)Bσ

ρ1

∫

Ω1

|∇Φ1|2 dΩ1 + ρ2

∫

Ω2

|∇Φ2|2 dΩ2

, (123)

see (53). Both of these functionals must be considered on class of functions Φ1(x) and
Φ2(x) for which the conditions

∆Φ1 = 0 (in Ω1),
∂Φ1

∂n
= 0 (on S1),

∂Φ2

∂n
= 0 (on S2), (124)

ζ :=
∂Φ1

∂n
=

∂Φ2

∂n
(on Γ),

∫

Γ

ζ dΓ = 0,

∫

Γ

Φ1 dΓ = 0,

∫

Ω2

Φ2 dΩ2 = 0,

are fulfilled.
40. For eigenfunctions of problem (63) – (68) the following equalities of orthogonal-

ities are valid:

(Ayk, yj)H(Ω) =
2∑

m=1

ρm

∫

Ωm

∇Φmk · ∇Φmj dΩm = δkj , (125)

(yk, yj)H(Ω) = c2ρ2

∫

Ω2

∆Φ2k ·∆Φ2j dΩ2 +
(

∂Φ1k

∂n
|Γ,

∂Φ1j

∂n
|Γ

)

Bσ

= λkδkj , (126)

(
B−1

σ PΓ(ρ1Φ1k − ρ2Φ2k), PΓ(ρ1Φ1j − ρ2Φ2j)
)
0
+ρ2c

−2

∫

Ω2

Φ2k ·Φ2j dΩ2 = λ−1
k δkj . (127)

Proof. 10. The first assertion is evident since (122) is a spectral problem for compact
positive operator A and µ = λ−1.

20. The second one is also the corollary of Hilbert - Schmidt theorem.
30. Formulas (125) can be derived analogously to transforms (113) – (121). Then

(126) follows from (122) and (125). Formulas (127) will be proved later (see Theorem
6). ¤



Small motions and eigenoscillations of a system „fluid – gas” in a bounded region 23

4. Variation principles for eigenvalues.

In the section, variation principles for eigenvalues of problem (63) – (68) are justified
on the base of variation relations (70) and (123). The comparison of these principles are
carried out in applications.

4.1. The first variation principle. Consider once more spectral problem (63) – (68).
For simplicity we put all physical constants (its are positive) to be equal to 1:

c = 1, ρ1 = 1, ρ2 = 1. (128)

Then we will have spectral problem

∆ϕ1 = 0 (in Ω1), −∆ϕ2 = λϕ2 (in Ω2), (129)

ζ :=
∂ϕ1

∂n
=

∂ϕ2

∂n
(on Γ),

∂ϕi

∂n
= 0 (on Si, i = 1, 2), (130)

Bσζ = λPΓ(ϕ1 − ϕ2) (on Γ),
∫

Γ

ζ dΓ = 0, λ

∫

Ω2

ϕ2 dΩ2. (131)

For this problem we receive (instead of (101)) the system of equations

Aη = λ(η + T2ζ), Bσζ = λ(−PΓγ2η + Cζ), (132)

η ∈ D(A), ζ ∈ D(Bσ), (133)

for the same denotations of operators. By analogy with Theorem 2 we prove that prob-
lem (132), (133) has a discrete spectrum {λk}∞k=1 consisting of finite multiple positive
eigenvalues λk with limit point λ = +∞.

Theorem 3. The eigenvalues λk to problem (129) – (131) are consecutive minima of
the variation relation

F 0
1 (ϕ1;ϕ2) :=

∑2
k=1

∫

Ωk

|∇ϕk|2 dΩk

∫

Ω2

|ϕ2|2 dΩ2 +
∫

Γ

∣∣∣B−1/2
σ PΓ(ϕ1 − ϕ2)

∣∣∣ dΓ
. (134)

This relation must be considered on functions ϕk ∈ H1
Ωk

with the properties

∆ϕ1 = 0 (in Ω1),
∂ϕ1

∂n
= 0 (on S1),

∂ϕ2

∂n
= 0 (on S2), (135)

∂ϕ1

∂n
=

∂ϕ2

∂n
=: ζ (on Γ),

∫

Γ

ϕ1 dΓ = 0,

∫

Ω2

ϕ2 dΩ2 = 0. (136)



24 N. D. Kopachevsky, M. Padula, B. M. Vronsky

Proof. 10. We use the substitution

A1/2η =: η̃ ∈ D(A1/2) (137)

in problem (132), (133). Then we have

A1/2η̃ = λ(A−1/2η̃ + T2ζ), Bσζ = λ(−PΓγ2A
−1/2η̃ + Cζ). (138)

If η̃ ∈ L2,Ω2 , then
A−1/2η̃ + T2ζ ∈ D(A1/2) (139)

because, by Lemma 4, the operator A1/2T2 is compact. Therefore we can apply the
operator A1/2 to the both parts of equation (138). It gives us the system of equations

(
A 0
0 Bσ

)(
η̃

ζ

)
= λ

(
I Q

Q∗ C

)(
η̃

ζ

)
, (140)

Q∗ = −PΓγ2A
−1/2, Q = A1/2T2, C = PΓ(C1 + C2)PΓ,

or
Ay = λJ y, y ∈ D(A)⊕D(Bσ), (141)

A := diag(A; Bσ) À 0,

y := (η̃; ζ)t,
J :=

(
I Q

Q∗ C

)
> 0. (142)

20. Problem (141) is equivalent to problem

J −1z = λA−1z, z = J y, (143)

and (143), in turn, is equivalent to problem

w = λJ 1/2A−1J 1/2w, w = J −1/2z. (144)

Since this problem, as problem (132), (133), has a discrete positive spectrum then
bounded and selfadjoint operator J 1/2A−1J 1/2 is a compact positive operator. Therefore
eigenvalues λk of this problem are consecutive minima of variation relation

(w,w)
(A−1/2J 1/2w,A−1/2J 1/2w)

=
(J −1/2z, z)
(A−1z, z)

=
(y, z)

(A−1z, z)
. (145)

30. We calculate numerator and denominator in (145) coming back to initial variables
ϕ1 and ϕ2. We have

(y, z) =

(
η̃

ζ

)
·
(

η̃ + Qζ

Q∗η + Cζ

)
= ‖η̃‖2

Ω2
+ (η̃, Qζ)Ω2 + (ζ, Q∗η̃)0 + (ζ, Cζ)0 =

=
∥∥∥A1/2η

∥∥∥
2

Ω2

+ 2Re(A1/2η,A1/2T2ζ)Ω2 + (PΓ(γ1T1 − γ2T2)ζ, ζ)0. (146)

Since∥∥∥A1/2η
∥∥∥

2

Ω2

=
∫

Ω2

|∇η|2 dΩ2, D(A1/2) = H1
Ω2

, η = ϕ21, T2ζ = ϕ22, T1ζ = ϕ1, (147)
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then the right hand side in (146) is equal to∫

Ω2

|∇ϕ21|2 dΩ2 + 2Re
∫

Ω2

∇ϕ21 · ∇ϕ22 dΩ2 +
∫

Ω2

|∇ϕ22|2 dΩ2 +
∫

Ω1

|∇ϕ1|2 dΩ1 =

=
∫

Ω1

|∇ϕ1|2 dΩ1 +
∫

Ω2

|∇(ϕ21 + ϕ22)|2 dΩ2 =
2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk. (148)

Calculating the denominator in (145) we have

(A−1z, z) =

(
A−1 0
0 B−1

σ

)(
η̃ + Qζ

Q∗η̃ + Cζ

)
·
(

η̃ + Qζ

Q∗η̃ + Cζ

)
=

=

(
A−1 (η̃ + Qζ)

B−1
σ (Q∗η̃ + Cζ)

)
·
(

η̃ + Qζ

Q∗η̃ + Cζ

)
=

∥∥∥A−1/2(η̃ + Qζ)
∥∥∥

2

Ω2

+

+
∥∥∥B−1/2

σ (Q∗η̃ + Cζ)
∥∥∥

2

0
=

∥∥∥B−1/2
σ (−PΓγ2η + PΓ (γ1T1 − γ2T2)ζ)

∥∥∥
2

0
+

+ ‖η + T2ζ‖2
Ω2

= ‖ϕ21 + ϕ22‖2
Ω2

+
∥∥∥B−1/2

σ PΓ(γ1ϕ1 − γ2ϕ22 − γ2ϕ21)
∥∥∥

2

0
=

= ‖ϕ2‖2
Ω2

+
∥∥∥B−1/2

σ PΓ(γ1ϕ1 − γ2ϕ2)
∥∥∥

2

0
=

=
∫

Ω2

|ϕ2|2 dΩ2 +
∫

Γ

∣∣∣B−1/2
σ PΓ(γ1ϕ1 − γ2ϕ2)

∣∣∣
2

dΓ. (149)

Now the variation principle (134) follows from (145), (148) and (149). Relations (135) –
(136) take place because the functions ϕ1 and ϕ2 must be solutions to auxiliary Problems
1 and 2 (see Subsection 3.1) for the element ζ ∈ H− (see formulas (83) – (88).) ¤

4.2. The second variation principle. We return to spectral problem (129) – (131).
Our goal is to prove the second variation principle for eigenvalues λ of this problem. We
check preliminary that numbers λ are coinside with values of the functional

F 0
2 (ϕ1; ϕ2) :=

∫

Ω2

|∆ϕ2|2 dΩ2 + ‖ζ‖2
Bσ

2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk

(150)

on solutions ϕ1, ϕ2 to problem (129) – (131) with taking into account relations (135),
(136). Here quadratic functional ‖ζ‖2

Bσ
is defined by (53).

To this end, we use the following relations that are valid for solutions to problem
(129) – (131):

0 = −
∫

Ω1

∆ϕ1 · ϕ1dΩ1 =
∫

Ω1

|∇ϕ1|2 dΩ1 −
∫

Γ

∂ϕ1

∂n
· ϕ1dΓ =

∫

Ω1

|∇ϕ1|2 dΩ1 −
∫

Γ

ζϕ1dΓ;
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−
∫

Ω2

∆ϕ2 ·∆ϕ2 dΩ2 = λ

∫

Ω2

ϕ2∆ϕ2 dΩ2 = λ


−

∫

Ω2

|∇ϕ2|2 dΩ2 −
∫

Γ

ϕ2
∂ϕ2

∂n
dΓ


 =

= λ


−

∫

Ω2

|∇ϕ2|2 dΩ2 −
∫

Γ

ϕ2ζ dΓ


 .

If we multiply he first relation by λ and subtract the second one we have

λ
2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk =
∫

Ω2

|∆ϕ2|2 dΩ2 + λ

∫

Γ

(ϕ1 − ϕ2)ζdΓ =

=
∫

Ω2

|∆ϕ2|2 dΩ2 + λ

∫

Γ

PΓ(ϕ1 − ϕ2)ζdΓ =
∫

Ω2

|∆ϕ2|2 dΩ2 + ‖ζ‖2
Bσ

. (151)

From this the variation relation (150) follows.

Theorem 4. Eigenvalues λ to problem (129) – (131) are consecutive minima of variation
relation (150) considered on functions ϕk ∈ H1

Ωk
such that conditions (135), (136) are

valid and, additionally, conditions

∆ϕ2 ∈ L2(Ω2), ζ =
∂ϕ1

∂n
|Γ=

∂ϕ2

∂n
|Γ∈ H = H0 = L2,Γ, (152)

are valid also.

Proof. With account of (128) problem (107) has the form

y = λA0y, y = (ψ; ϕ)t ∈ H(Ω), (153)

A0 =

(
A−1 A−1/2QB

−1/2
σ

B
−1/2
σ Q∗A−1/2 B

−1/2
σ CB

−1/2
σ

)
,

ψ = Aη = Aϕ21,

ϕ = B
1/2
σ ζ.

(154)

Here, as in problem (107), the matrix operator A0 is compact and positive (see Lemma 5
and Theorem 1). Therefore eigenvalues λ are consecutive minima of the variation relation

(y, y)
(A0y, y)

=
‖ψ‖2

Ω2
+ ‖ϕ‖2

0

(A0y, y)
. (155)

Since, by definition (see Problem 3), Aϕ21 = −∆ϕ21, ϕ21 ∈ D(A), then the numerator
in (155) is equal to

∫

Ω2

|∆ϕ21|2 dΩ +
∫

Γ

∣∣∣B1/2
σ ζ

∣∣∣
2

dΓ =
∫

Ω2

|∆ϕ2|2 dΩ2 + ‖ζ‖2
Bσ

, (156)

because ϕ21 = ϕ2 − ϕ22, ∆ϕ22 = 0 (see Problem 2).
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As for the denominator in (155) then the quadratic form (A0y, y) can be derived by
the same way as it was done in proof of Theorem 1. Taking into account (128) and using
formula (121), we have

(A0y, y) =
2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk, (157)

and from (155) – (157) the variation principle (150) follows. ¤

Remark 1. Conditions (152) in Theorem 4 (i.e., in the second variation principle, see
(150)) are sufficiently restrictive and its are connected with smoothness of functions
ϕi(x) in domains Ωi with nonsmooth boundaries ∂Ωi, i = 1, 2. In the first variation
principle (see Theorem 3) these conditions are absent. ¤

4.3. Comparison of the variation principles. Note at first that numbers µk := λ−1
k

in problem (129) – (131) are consecutive maxima of the variation relation (see (134))

F 0
3 (ϕ1; ϕ2) :=

∫

Ω2

|ϕ2|2 dΩ2 +
∫

Γ

∣∣∣B−1/2
σ PΓ(ϕ1 − ϕ2)

∣∣∣
2

dΓ

2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk

. (158)

This fact follows as from Theorem 3 as from equation (122).
Now we will carry out the comparison of the variation principles on the base of

functionals F 0
1 (ϕ1;ϕ2) from (134), F 0

2 (ϕ1; ϕ2) from (150) and F 0
3 (ϕ1;ϕ2) from (158) if

we will use the Ritz method of numerical calculations of eigenvalues and eigenfunctions
for problem (129) – (131).

As it follows from Theorem 3, one can find the eigenvalues λ to problem (129) – (131)
considering the variation problem on minimum for the functional

I(ϕ1;ϕ2) :=
2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk (159)

under the additional condition

K(ϕ1;ϕ2) :=
∫

Ω2

|ϕ2|2 dΩ2 +
∫

Γ

∣∣∣B−1/2
σ PΓ(ϕ1 − ϕ2)

∣∣∣
2

dΓ = const > 0. (160)

Instead of (159), (160) one can consider the problem on unconditional extremum for
the functional

I∗(ϕ1;ϕ2) := I(ϕ1; ϕ2)− λK(ϕ1; ϕ2) (161)

with taking into account connections (135), (136).
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It follows from Theorem 4 that one can find the eigenvalues λ solving the problem on
minimum for the functional

M(ϕ1; ϕ2) :=
∫

Ω2

|∆ϕ2|2 dΩ2 + ‖ζ‖2
Bσ

(162)

under the additional condition

I(ϕ1; ϕ2) = const > 0, (163)

i.e., the problem on unconditional extremum for the functional

M∗(ϕ1;ϕ2) := M(ϕ1; ϕ2)− λI(ϕ1; ϕ2). (164)

Here one must carry out variations in the class of functions such that conditions (135),
(136), (152) must be valid.

Both of these approaches for functionals (161) and (164) on the base of Ritz method
have the following restrictive fact: coordinate (basis) functions that approximate the
solution ϕ1(x) must be harmonic functions in the region Ω1 and Newmann condition
must be valid on the surface S1 for them. We can not take into account this restriction
if we will use the variation principle on the base of functional F 0

3 (ϕ1;ϕ2) from (158).

Theorem 5. In problem (129) - (131) one can find numbers µ = λ−1 by Ritz method
considering the problem on maximum of the functional K(ϕ1; ϕ2) under additional con-
dition I(ϕ1;ϕ2) = const > 0 or in the problem on unconditional extremum for the
functional

K∗(ϕ1;ϕ2) := K(ϕ1; ϕ2)− µI(ϕ1; ϕ2). (165)

In this, it is sufficient to carry out the variation in (164) in class of functions ϕi ∈ H1
Ωi
,

i = 1, 2.
Here conditions (135), (136) for functional are natural, i.e., its are valid automatically

for solutions to problem (129) – (131) with λ = µ−1.

Proof. Let δϕi(x) be arbitrary functions from H1
Ωi
, i = 1, 2. Then

∫

Γ

δϕ1 dΓ = 0,

∫

Ω2

δϕ2 dΩ2 = 0. (166)

Calculating variation of the functional K∗ on these functions and equating it to zero we
have

1
2

δK∗(ϕ1, ϕ2; δϕ1, δϕ2) =
∫

Ω2

ϕ2δϕ2 dΩ2 +
∫

Γ

B−1
σ PΓ(ϕ1 − ϕ2)PΓ(δϕ1 − δϕ2) dΓ−

−µ
2∑

k=1

∫

Ωk

∇ϕk · ∇δϕk dΩk =
∫

Ω2

ϕ2δϕ2 dΩ2 +
∫

Γ

B−1
σ PΓ(ϕ1 − ϕ2)δϕ1 dΓ−
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−
∫

Γ

B−1
σ PΓ(ϕ1 − ϕ2)δϕ2 dΓ− µ


−

∫

Ω1

∆ϕ1δϕ1 dΩ2 +
∫

S1

∂ϕ1

∂n
δϕ1 dS1


−

−µ




∫

Γ

∂ϕ1

∂n
δϕ1 dΓ−

∫

Ω2

∆ϕ2δϕ2 dΩ2 +
∫

S2

∂ϕ2

∂n
δϕ2 dS2 −

∫

Γ

∂ϕ2

∂n
δϕ2 dΓ


 =

=
∫

Ω2

(ϕ2 + µ∆ϕ2)δϕ2 dΩ2 + µ

∫

Ω1

∆ϕ1δϕ1 dΩ1 − µ

∫

S1

∂ϕ1

∂n
δϕ1 dS1−

−µ

∫

S2

∂ϕ2

∂n
δϕ2 dS2 +

∫

Γ

(
B−1

σ PΓ(ϕ1 − ϕ2)− µ
∂ϕ1

∂n

)
δϕ1 dΓ−

−
∫

Γ

(
B−1

σ PΓ(ϕ1 − ϕ2)− µ
∂ϕ2

∂n

)
δϕ2 dΓ = 0. (167)

From this one can prove sequentially the following facts.
10. If δϕ2 ≡ 0 in Ω2 and δϕ1 is a compactly supported (finitary) function in Ω1

then (with account of density property of finitary functions in L2(Ω1)) we have that the
equation ∆ϕ1 = 0 (in Ω1) is valid for ϕ1.

20. Putting on δϕ2 ≡ 0, δϕ1 ≡ 0 (on Γ) and using the fact that δϕ1 is arbitrary on

S1, we have the boundary condition
∂ϕ1

∂n
= 0 (on S1).

30. Putting on δϕ2 ≡ 0 and using the fact, that δϕ1 is an arbitrary function on Γ

with
∫

Γ

δϕ1 dΓ = 0, we receive the condition

B−1
σ PΓ(ϕ1 − ϕ2)− µ

∂ϕ1

∂n
= 0 (on Γ).

(More concrete, here the right hand side is equal to constant and it is equal to zero
because ∫

Γ

B−1
σ PΓ(ϕ1 − ϕ2) dΓ = 0,

∫

Γ

∂ϕ1

∂n
dΓ = 0.)

40. Let now δϕ2 be finitary. Then from (167) (with account of received relations) we
calculate that

ϕ2 + µ∆ϕ2 = 0 (in Ω2).

50. If δϕ2 ≡ 0 (on Γ) then we have
∂ϕ2

∂n
= 0 (on S2).

60. At last, if δϕ2 is an arbitrary function on Γ then we have the condition

µ
∂ϕ2

∂n
−B−1

σ PΓ(ϕ1 − ϕ2) = 0 (on Γ),
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(Indeed, since
∫

Ω2

δϕ2 dΩ2 = 0, then for the first time we have

µ
∂ϕ2

∂n
−B−1

σ PΓ(ϕ1 − ϕ2) = const.

But

−
∫

Ω2

∆ϕ2 dΩ2 = λ

∫

Ω2

ϕ2 dΩ2 = . . . =
∫

Γ

∂ϕ2

∂n
dΓ = 0,

and therefore above constant is equal to zero.)
Thus, solutions ϕ1 and ϕ2, corresponding to stationar values of functional (164) for

µ = λ−1, are solutions to spectral problem (129) – (131). ¤

5. On orthogonal basis property of the eigenfunctions.

In this section, properties of orthogonal basis for the system of eigenfunctions to
problem (63) – (68) or (129) – (131) are studied. We define more exactly Hilbert spaces
where these eigenfunctions form an orthogonal basis.

5.1. Some additional assertions. In the space H1
Ω1

(see Subsection 3.1) we introduce
the subspace H1

h,S1
(Ω1) of harmonic functions that are formed by weak solutions to the

auxiliary Problem 1 for all ζ ∈
(
H

1/2
Γ

)∗
:

H1
h,S1

(Ω1) :=
{

ϕ ∈ H1
Ω1

: ϕ = T1ζ, ∀ ζ ∈
(
H

1/2
Γ

)∗}
. (168)

It follows from ([9], p. 106) that subspace

H1
0,Γ(Ω1) :=

{
ψ ∈ H1

Ω1
: ψ ≡ 0 on Γ

}
(169)

is an orthogonal complement to H1
h,S1

(Ω1) in the space H1
Ω1
.

Introduce also the space

H1(Ω) :=
{
ϕ = (ϕ1; ϕ2) : ϕ2 ∈ H1

Ω2
, ϕ1 ∈ H1

h,S1
(Ω1),

∂ϕ2

∂n
|Γ=

∂ϕ1

∂n
|Γ=: ζ,

∂ϕ2

∂n
|S2= 0

}
(170)

with the norm

‖ϕ‖2
1,Ω :=

2∑

k=1

∫

Ωk

|∇ϕk|2 dΩk; (171)

this space is connected naturally with problem (129) – (131).

Lemma 6. Any element ϕ = (ϕ1;ϕ2) ∈ H1(Ω) has a representation

ϕ1 = T1ζ, ϕ2 = T2ζ + A−1f, ζ ∈
(
H

1/2
Γ

)∗
, f ∈ (

H1
Ω2

)∗
, (172)
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where T1, T2 and A are operators of auxiliary Problems 1 – 3 (see Subsection 3.1). The
operator

J :=

(
A−1 T2

0 T1

)
:

(
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
−→ H1(Ω) ⊂ H1

Ω2
×H1

h,S1
(Ω1) (173)

determines one-to-one correspondence between elements (f ; ζ)t and (ϕ2; ϕ1)t, it is bound-
ed and has bounded inverse.

Proof. 10. Let f ∈ (
H1

Ω2

)∗, ζ ∈
(
H

1/2
Γ

)∗
. Then, according to solutions properties of

auxiliary Problem 1, we have ϕ1 := T1ζ ∈ H1
h,S1

(Ω1). By Problem 2, we have analogously
ϕ22 := T2ζ ∈ H1

h,S2
(Ω2) ⊂ H1

Ω2
. Introduce also, by Problem 3, an element ϕ21 := A−1f ∈

H1
Ω2
. Then ϕ2 := ϕ21 + ϕ22 ∈ H1

Ω2
and therefore

ϕ := (ϕ2; ϕ1)t ∈ H1
Ω2
×H1

h,S1
(Ω1),

∂ϕ2

∂n
=

∂ϕ1

∂n
= ζ (on Γ),

i.e., ϕ ∈ H1(Ω).
Hence, representations (172) and (173) are proved. Remark now that in (173) the

operator T1 acts boundedly from
(
H

1/2
Γ

)∗
onto H1

h,S1
(Ω1), the operator T2 acts bound-

edly from
(
H

1/2
Γ

)∗
onto H1

h,S2
(Ω2) ⊂ H1

Ω2
and the operator A−1 acts boundedly

from
(
H1

Ω2

)∗ onto H1
Ω2
. Therefore the operator matrix J from (173) is bounded from

(
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
into H1(Ω).

20. Conversely, let

ϕ2 ∈ H1
Ω2

, ϕ1 ∈ H1
h,S1

(Ω1),
∂ϕ1

∂n
=

∂ϕ2

∂n
(on Γ).

Then ζ := T−1
1 ϕ1 =

∂ϕ1

∂n
|Γ∈

(
H

1/2
Γ

)∗
(see (86)). Introduce ϕ22 := T2ζ = T2T

−1
1 ϕ1 ∈

H1
h,S2

(Ω2) ⊂ H1
Ω2
. Then

ϕ21 := ϕ2 − ϕ22 = ϕ2 − T2T
−1
1 ϕ1 ∈ H1

Ω2
= R(A−1) = D(A),

and therefore
f := A(ϕ2 − ϕ22) = Aϕ2 −AT2T

−1
1 ϕ1 ∈

(
H1

Ω2

)∗
.

Finally, we have
(

f

ζ

)
=

(
A −AT2T

−1
1

0 T−1
1

) (
ϕ2

ϕ1

)
∈ (

H1
Ω2

)∗ ×
(
H

1/2
Γ

)∗
, (174)

where the operator

J −1 =

(
A −AT2T

−1
1

0 T−1
1

)
: H1

Ω2
×H1

h,S1
(Ω1) −→

(
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
(175)

is bounded because here all entries are bounded operators. ¤
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5.2. Orthogonal basis properties for the system of eigenfunctions. On the base
of above proved facts, we will prove here orthogonal basis property for eigenfunctions of
problem (129) – (131) and initial spectral problem (63) – (68).

Theorem 6. Eigenfunctions

{ϕk}∞k=1 := {ϕ2k; ϕ1k}∞k=1

of problem (129) – (131) form an orthogonal basis in the space H1(Ω) (see (170)). Re-
spectively, eigenfunctions Φk := (Φ2k; Φ1k), k = 1, 2, . . ., of problem (63) – (68) form an
orthogonal basis in the space H1(Ω; ρ) with the norm

‖Φ‖2
1,Ω,ρ :=

2∑

m=1

ρm

∫

Ωm

|∇Φm|2 dΩm. (176)

In this, for eigenfunctions {ϕk}∞k=1 of problem (129) – (131) the following formulas

2∑

m=1

∫

Ωm

∇ϕmk · ∇ϕmj dΩm = δkj ,

∫

Ω2

∆ϕ2k ·∆ϕ2j dΩ2 +
(

∂ϕ1k

∂n
|Γ,

∂ϕ1j

∂n
|Γ

)

Bσ

= λkδkj ,

∫

Ω2

ϕ2k · ϕ2j dΩ2 +
∫

Γ

(
B−1

σ PΓ(ϕ1k − ϕ2k)
)
(ϕ1j − ϕ2j) dΓ = λ−1

k δkj ,





(177)

are valid, and for eigenelements {Φk}∞k=1 of problem (63) – (68) formulas orthogonality
(125) – (127) hold.

Proof. It is evident that we can prove only the first assertion of the theorem, i.e., prop-
erties for functions {ϕk}∞k=1. Proof of corresponding properties for functions {Φk}∞k=1 is
the same.

As it follows from proof of Theorem 4, eigenelements

yk =
(
−∆ϕ2k;B1/2

σ

(
∂ϕ1k

∂n

)

Γ

)t

of problem (153) – (154) form an orthogonal

basis in the space H(Ω) = L2,Ω2 ⊕H0. By (153) and (157),

(A0yk, yl) =
2∑

m=1

ρm

∫

Ωm

∇ϕmk · ∇ϕml dΩm = 0 (k 6= l), (178)

and if (A0yk, yl) = δkl, then the system of eigenelements {(ϕ2k; ϕ1k)}∞k=1 to problem
(129) – (131) is orthonormal in the space H1(Ω). We will prove now that this system
form an orthogonal basis in H1(Ω).



Small motions and eigenoscillations of a system „fluid – gas” in a bounded region 33

Since the operators J and J −1, by Lemma 6, are bounded, it is sufficient to check
that the set of elements

yk =
(
−∆ϕ2k; B1/2

σ

(
∂ϕ1k

∂n

)

Γ

)t

, k = 1, 2, . . . , (179)

is complete in the space
(
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
. Indeed, in the case the system of elements

{(ϕ2k; ϕ1k)}∞k=1 will be complete in H1(Ω) and orthogonal, i.e., it will be an orthogonal
basis in H1(Ω).

Let ϕ0 = (ϕ0
2; ϕ

0
1)

t be an arbitrary element from H1(Ω). Then, by Lemma 6, the
element

ψ0 :=
(
−∆ϕ0

2;
(

∂ϕ0
1

∂n

)

Γ

)t

= J −1ϕ0 ∈ (
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
. (180)

Since the space L2,Ω2 and L2,Γ = H0 have equipments, i.e.,

H1
Ω2
⊂ L2,Ω2 ⊂

(
H1

Ω2

)∗
, H

1/2
Γ ⊂ L2,Γ ⊂

(
H

1/2
Γ

)∗
, (181)

then (
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
⊃ L2,Ω2 ⊕H0 = H(Ω) (182)

and H(Ω) is dense in
(
H1

Ω2

)∗×
(
H

1/2
Γ

)∗
. Therefore for any ε > 0 there exists an element

ψ̃0 ∈ H(Ω) such that ∥∥∥ψ0 − ψ̃0
∥∥∥

(H1
Ω2

)∗×
(
H

1/2
Γ

)∗ < ε/2. (183)

Further, for any element u ∈ H(Ω) the inequality

‖u‖(
H1

Ω2

)∗×
(
H

1/2
Γ

)∗ 6 c ‖u‖H(Ω) (184)

holds since the embedding operator from H(Ω) into
(
H1

Ω2

)∗×
(
H

1/2
Γ

)∗
is bounded (and

even compact). Since elements {yk}∞k=1 from (179) form an orthogonal basis in H(Ω)
and therefore form a complete system, then one can take a number N = N(ε) ∈ N and
coefficients ck, k = 1, . . . , N(ε), such that∥∥∥∥∥∥

ψ̃0 −
N(ε)∑

k=1

ckyk

∥∥∥∥∥∥
H(Ω)

<
ε

2c
, (185)

where c > 0 is a constant from (184). Then, by (184) and (185), we have∥∥∥∥∥∥
ψ0 −

N(ε)∑

k=1

ckyk

∥∥∥∥∥∥
(H1

Ω2
)∗×(H

1/2
Γ )∗

=

∥∥∥∥∥∥
(ψ0 − ψ̃0) +


ψ̃0 −

N(ε)∑

k=1

ckyk




∥∥∥∥∥∥(
H1

Ω2

)∗×
(
H

1/2
Γ

)∗
<

<
ε

2
+

∥∥∥∥∥∥
ψ̃0 −

N(ε)∑

k=1

ckyk

∥∥∥∥∥∥(
H1

Ω2

)∗×
(
H

1/2
Γ

)∗
<

ε

2
+ c

∥∥∥∥∥∥
ψ̃0 −

N(ε)∑

k=1

ckyk

∥∥∥∥∥∥
H(Ω)

< ε,
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i.e., the system of elements from (179) is complete in
(
H1

Ω2

)∗ ×
(
H

1/2
Γ

)∗
. ¤

On the base of above proved assertions, we will prove corresponding basis properties
of and completeness for the system of eigenfunctions to spectral problem generated by
initial boundary value problem (8) – (15).

We will consider solutions to homogeneous problem (8) – (14) in the form

~wi(t, x) = ~wi(x)eiωt, pi(t, x) = pi(x)eiωt, i = 1, 2, (186)

where ω is a frequency of oscillations and ~wi(x), pi(x) are so called amplitude functions
(modes of oscillations). We have the following spectral problem for these functions:

λ~w1 =
1
ρ1
∇p1, div ~w1 = 0 (in Ω1), ~w1 · ~n = 0 (on S1), λ = ω2, (187)

λ~w2 =
1
ρ2
∇p2, p2 + ρ2c

2div ~w2 = 0 (in Ω2), ~w2 · ~n = 0 (on S2), (188)

~w1 · ~n = ~w2 · ~n =: ζ, PΓ(p1 − p2) = Bσζ (on Γ). (189)

This problem is equivalent to problem (63) – (68) since

~wi(x) = ∇Φi(x), i = 1, 2.

On the base of orthogonal decompositions (23) and (34) introduce subspace

~G(Ω) := ~G(Ω2)⊕ ~Gh,S1(Ω1) :=
{

~w := (~w2; ~w1) : ~w2 = ∇Φ2 ∈ ~G(Ω2),

~w1 = ∇Φ1 ∈ ~Gh,S1(Ω1), ~w1 · ~n = ~w2 · ~n =: ζ (on Γ),
∂Φ2

∂n
= 0 (on S2)

}
(190)

in the space ~L2(Ω1)⊕ ~L2(Ω2) with scalar product

(~w,~v) :=
2∑

k=1

ρk

∫

Ωk

~wk · ~vk dΩk. (191)

It is evident that solutions ~w = (~w2; ~w1) to problem (187) – (189) must belong to the
space ~G(Ω).

Theorem 7. Eigenfunctions ~wk = (~w2k; ~w1k) = (∇Φ2k;∇Φ1k), k = 1, 2, . . ., to problem
(187) – (189), corresponding to nonzero eigenvalues λk, form an orthogonal basis in the
subspace ~G(Ω).

Proof. By Theorem 6, eigenfunctions {(Φ2k; Φ1k)}∞k=1 of problem (63) – (68) form an
orthogonal basis in the space H1(Ω; ρ) with squared norm (176). It follows from (190)
and (191) that there exists isometric isomorphism between elements of spaces H1(Ω; ρ)
and ~G(Ω).
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Indeed, any element (∇Φ2;∇Φ1) ∈ ~G(Ω) is defined uniquely by the element (Φ2; Φ1) ∈
H1(Ω; ρ). Conversely, an element (Φ2; Φ1) is uniquely defined by (∇Φ2;∇Φ1) ∈ ~G(Ω)
because we must take into account conditions (26) and (35):∫

Γ

Φ1 dΓ = 0,

∫

Ω2

Φ2 dΩ2 = 0. (192)

Finally, for arbitrary (~w2; ~w1), (~v2;~v1) from ~G(Ω), ~wi = ∇Φi, ~vi = ∇Ψi, i = 1, 2, we
have

((~w2; ~w1), (~v2;~v1)) ~G(Ω) = ((∇Φ2;∇Φ1), (∇Ψ2;∇Ψ1)) ~G(Ω) =

=
2∑

k=1

ρk

∫

Ωk

~wk · ~vk dΩk =
2∑

k=1

ρk

∫

Ωk

∇Φk · ∇Ψk dΩk = ((Φ2; Φ1), (Ψ2; Ψ1))H1(Ω,ρ) . (193)

It proves the theorem. ¤

5.3. Some limit cases. Comming back to variation principles for eigenvalues λ = ω2

in problem (63) – (68) (see theorems 3 – 5) we remark once more that these eigenvalues
can be find as consecutive minima of the functional

F1(Φ1; Φ2) =

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

ρ2c
−2

∫

Ω2

|Φ2|2 dΩ2 +
∥∥∥B−1/2

σ PΓ(ρ1Φ1 − ρ2Φ2)
∥∥∥

2

0

(194)

or the functional

F2(Φ1; Φ2) =

c2ρ2

∫

Ω2

|∆Φ2|2 dΩ2 +
∥∥∥∥
(

∂Φ1

∂n

)

Γ

∥∥∥∥
2

Bσ

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

(195)

on corresponding classes of functions Φ1 and Φ2, see conditions (135), (136) for ϕi = Φi,
i = 1, 2.

Consider limit problems in variation relations (194), (195). These problems correspond
to limit values of physical parameters in studied hydrodynamical system „fluid – gas”.

10. If the density of a gas tends to zero, ρ2 −→ 0, then in limit we have the well-
known problem on small oscillations of a capillary ideal fluid in an open vessel (see, for
instance, [9], p. 207). Then

F1 = F1(Φ1) =

ρ1

∫

Ω1

|∇Φ1|2 dΩ1

∥∥∥B−1/2
σ ρ1Φ1

∥∥∥
2

0

, (196)
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F2 = F2(Φ1) =

∥∥∥∥
(

∂Φ1

∂n

)

Γ

∥∥∥∥
2

Bσ

ρ1

∫

Ω1

|∇Φ1|2 dΩ1

. (197)

20. If the velocity of a sound tends to infinity, c2 −→ ∞, then in limit we have a
problem on small oscillation of two capillary ideal fluids with densities ρ1 and ρ2 (see
[9], p. 212). Then we can put c−2 = 0 into functional (194):

F1(Φ1; Φ2) |c2=∞=

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

∥∥∥B−1/2
σ PΓ(ρ1Φ1 − ρ2Φ2)

∥∥∥
2

0

. (198)

But in functional (195) this procedure is not correct. Here we must do the following:
we divide (195) on c2 and calculate the limit when c−2 −→ 0. We will have the functional

lim
c−2−→0

c−2F2(Φ1, Φ2) =

ρ2

∫

Ω2

|∆Φ2|2 dΩ2

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

. (199)

It can be shown (see below) that functional (199) defines an asymptotic behavior of
eigenvalues λc−2 corresponding to the so-called acoustic waves in studied hydrosystem.

30. Finally, if mesΩ1 −→ 0 (and therefore mesΓ −→ 0) then in a limit case a
classical problem on oscillations of a barotropic gas in a region Ω2 = Ω arizes. Here we
have variation relations

c2

∫

Ω2

| ∇Φ2 |2 dΩ2

∫

Ω2

| Φ2 |2 dΩ2

,

c2

∫

Ω2

| ∆Φ2 |2 dΩ2

∫

Ω2

| ∇Φ2 |2 dΩ2

, (200)

corresponding to squared frequences of acoustic oscillations in Ω2 = Ω.

5.4. On surface and acoustic waves in the system „fluid – gas”. Here we will
briefly consider some simple heuristic assertions connected with existence in the system
„fluid – gas” of wave motions of two tipes.

Remark preliminary that if c2 = ∞, i.e., the second fluid is incompressible, then we
have in the system only surface waves. These waves are located in the vicinity of the
equilibrium surface Γ (skin effect). Squared frequences of oscillations of these waves are
consecutive minima of functional (198). From the other hand, the property of compress-
ibility of the second fluid, as it is evident from physical considerations, must generate
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acoustic waves in the region Ω2 fulfilled by a gas. In this, squared frequencies of oscilla-
tions of these types of waves are positive. They form a discrete spectrum with limit point
at +∞, i.e., both branches of eigenvalues are located on a positive semiaxis. Therefore
it is very difficult to separate eigenvalues for these two types of waves. Here we must
take into account not only eigenvalues but eigenfunctions of studied problem also.

Come back to problem (101), (102) and rewrite it in the form taking into account
Lemma 4. We have

ρ2Aη = λε(η + ρ2A
−1/2Q∗ζ), Bσζ = λ(ρ2QA1/2η + Cζ), (201)

Q := −PΓγ2A
−1/2, Q∗ = A1/2T2, ε := c−2 > 0. (202)

Consider solutions to problem (201), (202) as functions of a parameter ε = c−2 > 0.
Remark that eigenvalues and eigenfunctions of the problem are continuous functions in
ε when ε changes continuously on positive interval.

It is easily seen that solutions to problem (201), (202) are separated on two classes
when ε −→ +0. For the first class we have λ = λ(ε) = O(1) (ε −→ +0), and for the
second one λε =: µ = µ(ε) = O(1) (ε −→ +0). For the first class we have in the limit
λ = λ0, η = η0, ζ = ζ0, and for these elements relations

ρ2Aη0 = 0, Bσζ0 = λ0(ρ2QA1/2η0 + Cζ0), (203)

are valid. Since A À 0, Bσ À 0, then it follows from (203) that η0 = 0, Bσζ0 = λ0Cζ0.
Then nontrivial solutions to system (203) have the form

η0 = η0k = 0, λ0 = λ0k, Bσζ0k = λCζ0k, k = 1, 2, . . . , (204)

where λ0k and ζ0k are solutions to spectral problem (204). It corresponds to variation
relation (198) and surface waves in the system of two capillary incompressible fluids.
The problem has a discrete spectrum {λ0k}∞k=1 with limit point +∞.

Thus, in problem (201), (202) there exist solutions (surface waves) of the form

λ = λ(ε) = λ0k + o(1), η = η(ε) = o(1), ζ = ζ(ε) = ζ0k + o(1) (ε = c−2 −→ 0). (205)

For the second class of solutions we consider the limit case µ(ε) =
λ(ε)ε −→ µ0 (ε −→ +0), and from (201) we have the system of equations

ρ2Aη = µ0(ρ2η0 + ρ2A
−1/2Q∗ζ0), 0 = µ0(ρ2QA−1/2η0 + Cζ0). (206)

It can be proved that this system (for µ0 6= 0) has a discrete positive spectrum µ0 = µ0k,
k = 1, 2, . . ., with limit point µ = +∞, and numbers µ0k can be finded as consecutive
minima of variation relation (199). A physical sence of solutions of this form is the
following: they are acoustic waves that are located not only in a gas (region Ω2), across
the surface Γ a fluid in a region Ω1 also envolves in process of joint oscillations.

Thus, in the second case solutions to problem (201) have the form

λ(ε) = µk(ε)ε−1 = ε−1(µ0k + o(1)), η(ε) = η0k + o(1), (207)
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ζ(ε) = ζ0k + o(1), ε −→ +0, k = 1, 2, . . . ,

where µ0k are eigenvalues of variation relation (199) and η0k and ζ0k are correspondent
eigenelements (199) or system (206).

Comparing (205) and (207) we finally conclude that solutions to problem on oscil-
lations of a system „fluid – gas” are asymptotically (as c2 −→ ∞) separated on two
classes of oscillations (surface and acoustic waves) for which frequencies have different
asymptotic behavior.

6. On solvability of the initial boundary value problem.

Here we consider problems on unique solvability of the initial boundary value scalar
problem (55) – (61) and the initial vector problem (8) – (15). The theorem on existence of
strong solution to abstract hyperbolic equation in Hilbert space is the base for receiving
these results.

6.1. On transition to hyperbolic equation in Hilbert space. Come back to scalar
initial boundary value problem (55) – (61) for displacement potentials Φi(t, x), i = 1, 2.
Spectral problem (63) – (68) correspond to it if solutions of homogeneous initial boundary
value problem (55) – (61) have the form Φi(t, x) = eiωtΦi(x) (see (62)). Further, we used
an operator approach for investigation of problem (63) – (68), and this approach led us
to study of equations system (101) – (102).

We can use the same transforms in the initial boundary value problem (55) – (61)
repeating the same way and considering that unknown functions are functions in variable
t with values in corresponding Hilbert spaces. Then instead of (101) – (102) we come to
Cauchy problem

d2

dt2
(ρ2η + ρ2T2ζ) + ρ2c

2Aη = ρ2F2(t), (208)

d2

dt2
(−ρ2PΓγ2η + Cζ) + Bσζ = (ρ1F1 − ρ2PΓF2) |Γ (t), (209)

η(0) = η0, η′(0) = η1, ζ(0) = ζ0, ζ ′(0) = ζ1, (210)

where we used the same notations and

∇F2 = P2,G
~f, ∇F1 = P1,h,S1

~f, ~f = ~f(t, x), (211)

see (40), (33).
Further, we carry out the following formal transforms in problem (208) – (211). We

use the substitutions

η = A−1/2η̃, ζ = C−1/2ζ̃, C = PΓ(ρ1C1 + ρ2C2)PΓ > 0. (212)

Then, acting from the left by the operators A1/2 in (208) and C−1/2 in (209) (these steps
will be justified), we will have

d2

dt2

(
ρ2η̃ + ρ2Q

∗C−1/2ζ̃
)

+ c2ρ2Aη̃ = ρ2A
1/2F2(t), (213)
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d2

dt2

(
ρ2C

−1/2Qη̃ + ζ̃
)

+ C−1/2BσC−1/2ζ̃ = C−1/2(ρ1F1 − ρ2PΓF2) |Γ (t), (214)

η̃(0) = η̃0 = A1/2η0, η̃′(0) = A1/2η1, ζ̃(0) = C1/2ζ0, ζ̃ ′(0) = C1/2ζ1. (215)

Remember that, by Lemma 4, the operators

Q := −PΓ(γΓA−1/2) : L2,Ω2 −→ H0 = L2,Γ, Q∗ := A1/2T2 : H0 −→ L2,Ω2 (216)

are mutual adjoint and compact.

Lemma 7. The operators

V := C−1/2Q : L2,Ω2 −→ H0, V ∗ := QC−1/2 : H0 −→ L2,Ω2 (217)

are mutual adjoint and bounded.

Proof. By Lemma 3, the operator C−1/2 (after extention on H0) act boundedly from
H0 onto H− = (H1/2

Γ )∗; the operator T2 is bounded from H− into H1
Ω2

(see Problem 2
and (89)); the operator A1/2 is bounded from H1

Ω2
= D(A1/2) onto L2,Ω2 . Therefore the

operator Q∗C−1/2 = A1/2T2C
−1/2 is bounded from H0 into L2,Ω2 . Since V is adjoint to

V ∗ then the operator C−1/2Q is bounded also. ¤

Rewrite problem (213) – (215) in a vector-matrix form, i.e.,

d2

dt2
(By) +Ay = F(t), y(0) = y0, y′(0) = y1, (218)

F(t) :=
(
ρ2A

1/2F2(t);C−1/2(ρ1F1 − ρ2PΓF2) |Γ (t)
)t

, (219)

y =

(
η̃

ζ̃

)
∈ H(Ω) := L2,Ω2 ⊕H0, y0 =

(
η̃0

ζ̃0

)
, y1 =

(
η̃1

ζ̃1

)
, (220)

B :=

(
ρ2I ρ2V

∗

ρ2V I

)
, A :=

(
c2ρ2A 0

0 C−1/2BσC−1/2

)
. (221)

It follows from properties of the operators A, C−1 and Bσ that the operator A, defined
on the set

D(A) := D(A)⊕D(C−1/2BσC−1/2), D(C−1/2BσC−1/2) = R(C1/2B−1
σ C1/2), (222)

is an unbounded selfadjoint positive definite operator acting in the space H(Ω).

Lemma 8. The operator B is a bounded selfadjoint and positive definite operator acting
in H(Ω).

Proof. It follows from Lemma 7 that B is selfadjoint and bounded. Check that B is
positive definite.

For any y ∈ H(Ω) we have

(By, y)H(Ω) =
(
ρ2η̃ + ρ2V

∗ζ̃, η̃
)

Ω2

+
(
ρ2V η̃ + ζ̃, ζ̃

)
0

=
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= ρ2 ‖η̃‖2
Ω2

+ 2ρ2Re
(
V ∗ζ̃, η̃

)
0
+ ‖ ζ̃ ‖2

0 .

Coming back to variables η and ζ by formulas (212), using relation (110), i.e.,

‖ C1/2ζ ‖2
0=‖ ζ ‖2

H−= ρ1

∫

Ω1

| ∇Φ1 |2 dΩ1 + ρ2

∫

Ω2

| ∇Φ22 |2 dΩ2 =

= ρ1 ‖ T1ζ ‖2
1,Ω1

+ρ2 ‖ T2ζ ‖2
1,Ω2

, (223)

and solutions properties of auxiliary boundary value problems 1 – 3, we will have

(By, y)H(Ω) = ρ2 ‖ A1/2η ‖2
Ω2

+2ρ2

(
A1/2T2C

−1/2C1/2ζ,A1/2η
)

Ω2

+ ρ2 ‖ T2ζ ‖2
1,Ω2

+

+ρ1 ‖ T1ζ ‖2
1,Ω1

= ρ2 ‖ A1/2η ‖2
Ω2

+2ρ2

(
A1/2η,A1/2T2ζ

)
Ω2

+ ρ2 ‖ A1/2T2ζ ‖2
Ω2

+

+ρ1 ‖ T1ζ ‖2
Ω1

> ρ2

{
(1− ε) ‖ A1/2η ‖2

Ω2
+(1− ε−1) ‖ A1/2T2ζ ‖2

Ω2

}
+ ρ1 ‖ T1ζ ‖2

Ω1
=

= ρ2

{
(1− ε) ‖ η̃ ‖2

Ω2
+(1− ε−1) ‖ T2ζ ‖2

1,Ω2

}
+ ρ1 ‖ T1ζ ‖2

1,Ω1
, (224)

where ε is an arbitrary positive. We also used in (224) the property

‖ A1/2T2ζ ‖Ω2=‖ T2ζ ‖1,Ω2 ,

see Problem 3 and (96).
Coming back to Problems 1 and 2, observe that the following inequalities are valid

for solutions to these problems:

‖ T2ζ ‖1,Ω26‖ T2 ‖ · ‖ ζ ‖−=‖ T2 ‖ · ‖ T−1
1 T1ζ ‖−6‖ T2 ‖ · ‖ T−1

1 ‖ · ‖ T1ζ ‖1,Ω1=:

=: c−1 ‖ T1ζ ‖1,Ω1 , c > 0. (225)

Therefore the right hand side in (224) can be evaluated from below, and we will have

(By, y)H(Ω) > ρ2(1− ε) ‖ η̃ ‖2
Ω2

+[ρ2(1− ε−1) + ρ1c
2α] ‖ T2ζ ‖1,Ω2 +

+ρ1(1− α) ‖ T1ζ ‖2
1,Ω1

, α ∈ R. (226)

Take now parameters ε and α by such a way that the following relations will be valid:

0 < ε < 1, 0 < α < 1, ρ2(1− ε) = 1− α = (1− ε−1) + ρ1c
2ρ−1

2 =: c0 > 0. (227)

It is easy to check that this system of equations has a unique solution, and then we have
(for these ε and α) the inequality

(By, y)H(Ω) > c0

{
‖η̃‖2

Ω2
+ ρ2 ‖T2ζ‖2

1,Ω2
+ ρ1 ‖T1ζ‖2

1,Ω1

}
=

= c0

{
‖η̃‖2

Ω2
+

∥∥∥ζ̃
∥∥∥

2

0

}
= c0 ‖y‖2

H(Ω) , c0 > 0. (228)

Here we also used relation (223). ¤

Proved properties of the operators B and A show us that problem (218) is connected
with Cauchy problem for hyperbolic equation in Hilbert space H(Ω).
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6.2. On solvability of the initial boundary value problem for displacements
potentials. Further we use the following well know fact on solvability on Cauchy prob-
lem for equation of the form (218) (see, for instance, [9], pp. 60-63).

Theorem 8. Let in problem (218) the operator B be bounded and positive definite and
the operator A be selfadjoint (generally speaking, unbounded) positive definite. If the
following conditions are valid, namely,

y0 ∈ D(A), y1 ∈ D(A1/2), F(t) ∈ C1(R+;H(Ω)), (229)

then problem (218) has a unique strong solution for t > 0, i.e., such a function y(t) that

y(t) ∈ D(A), ∀ t ∈ R+, Ay(t) ∈ C(R+,H(Ω)),

y′(t) ∈ C(R+,D(A1/2)), y′′(t) ∈ C(R+,H(Ω)),

and equation (218) is valid for t > 0 and initial conditions are valid also.
If instead of (229) conditions

y0 ∈ D(A1/2), y1 ∈ H(Ω), F(t) ∈ C(R+;H(Ω)) (230)

hold, then problem (218) has a generalized solution with continuous in t full energy. For
this solution the law of full energy balance take place in the following form

1
2

∥∥∥∥B1/2 dy

dt

∥∥∥∥
2

H(Ω)

+
1
2

∥∥∥A1/2y(t)
∥∥∥

2

H(Ω)
=

1
2

∥∥∥B1/2y1
∥∥∥

2

H(Ω)
+

+
1
2

∥∥∥A1/2y0
∥∥∥

2

H(Ω)
+

t∫

0

(F(s), y′(s)
)
H(Ω)

ds. ¤ (231)

Remark 2. If the operator A = G∗G then instead of the second condition in (229) one
can take condition y1 ∈ D(G) and in (230) D(A1/2) must be changed by D(G). ¤

On the base of Theorem 8 we will prove now some assertions on solvability of the
initial boundary value problems on small motions of a system „fluid – gas”.

Theorem 9. Let in problem (208) – (211) the following conditions be satisfied:

η0 ∈ D(A3/2), η1 ∈ D(A), ζ0 ∈ D(C−1/2Bσ), ζ1 ∈ D(B1/2
σ ), (232)

~f(t, ·) ∈ C1(R+; ~L2(Ω)). (233)

Then problem (208) – (211) has (for t > 0) a strong solution with values in D(A1/2)⊕
D(C−1/2), i.e., such functions η(t) and ζ(t) that the following properties are valid.

10. η(t) ∈ D(A) and Aη(t) ∈ C(R+;D(A1/2));
20. η(t) + T2ζ(t) and η(t) ∈ C2(R+;D(A1/2));
30. ζ(t) ∈ D(Bσ) and Bσζ ∈ C(R+;H1/2

Γ );
40. −ρ2PΓγ2η(t)+PΓ(ρ1C1+ρ2C2)ζ(t) and PΓ(ρ1C1+ρ2C2)PΓζ(t) ∈ C2(R+; H1/2

Γ );
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50. equations (208) and (209) hold, any term in (208) is a function in t with values in
D(A1/2) = H1

Ω2
and any term in (209) is a function in t with values in D(C−1/2) = H

1/2
Γ ;

60. initial conditions (210) hold.
If the following conditions are valid,

η0 ∈ D(A), η1 ∈ D(A1/2), ζ0 ∈ D(B1/2
σ ), ζ1 ∈ (H1/2

Γ )∗ = H−, (234)

~f(t, x) ∈ C(R+; ~L2(Ω)), (235)

then problem (208) – (209) has a unique solution with continuous full energy, i.e., such
functions that the law of full energy balance (231) holds and any term in this relation is
a continuous function in t ∈ R+.

Proof. If conditions (232), (233) hold then in problem (218) – (221) (with taking into
account (212)) we have

η̃0 ∈ D(A), η̃1 ∈ D(A1/2), ζ̃0 ∈ D(C−1/2BσC−1/2), ζ̃1 ∈ D(B1/2
σ C−1/2). (236)

Further, if ~f(t, x) ∈ C1(R+; ~L2(Ω)) then ∇F2 = P2,G
~f ∈ C1(R+; ~G(Ω2)), F2 ∈

C1(R+;H1
Ω2

) and therefore ρ2A
1/2F2 ∈ C1(R+;L2,Ω2) since H1

Ω2
= D(A1/2). Next,

∇F1 = P1,h,S1
~f ∈ C1(R+; ~Gh,S1(Ω1)) and F1 ∈ C1(R+; H1

h,S1
(Ω1)). Therefore

(ρ1F1 − ρ2PΓF2) |Γ∈ C1(R+; H1/2
Γ ) = C1(R+;D(C−1/2)). (237)

Thus, if conditions (232), (233) hold then conditions (229) are valid (see also Remark
2, problem (218)). Therefore, by Theorem 8, problem (218) has a unique strong solution
on R+. It means that equations (213) and (214) are valid and any term in these equations
is a continuous in t function with values in the spaces L2,Ω2 and H0 = L2,Γ, respectively.

Come back from (213), (214) to system (208), (209) using inverse substitutions (212).
Acting from the left by the (bounded) operator A−1/2 to (213) and by the (bounded)
operator C1/2 to (214), we conclude that system of equations (208), (209) hold, and in
(208) any term is a function in t with values in D(A1/2) = H1

Ω2
and in (209) any term

is a function in t with values in D(C−1/2) = H
1/2
Γ . In other words, problem (208), (209)

has a strong solution (η(t); ζ(t))t with values in D(A1/2) ⊕ D(C−1/2). Note else that
properties

η(t) ∈ C2(R+;D(A1/2)), PΓ(ρ1C1 + ρ2C2)PΓζ(t) ∈ C2(R+;H1/2
Γ ) (238)

follow from the fact that
d2

dt2
(By(t)) ∈ C(R+;H(Ω)) and invertibility of the operator B

(Lemma 8).
Proof of existence of the generalized solution to problem (208) – (211) has the same

way and therefore it is absent here. ¤

Taking into account Theorem 9 we will prove now the theorem on strong solvability
of the initial boundary value problem (55) – (61) for displacement potentials.
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Theorem 10. Let in problem (55) – (61) the following conditions be satisfied:

Φ0
1 ∈ H1

h,S1
(Ω1), Φ0

2 = Φ0
21 + Φ0

22, (239)

Φ0
22 ∈ H1

h,S2
(Ω2),

∂Φ0
22

∂n
|Γ=

∂Φ0
1

∂n
|Γ=: ζ0 ∈ D(Bσ) ∩H

3/2
Γ , (240)

∆Φ0
21 ∈ H1

Ω2
, Φ1

1 ∈ H1
1,S1

(Ω1), Φ1
2 = Φ1

21 + Φ1
22, (241)

Φ1
22 ∈ H1

h,S2
(Ω2),

∂Φ1
22

∂n
|Γ=

∂Φ1
1

∂n
|Γ=: ζ1 ∈ D(B1/2

σ ) = H1
Γ, Φ1

21 ∈ D(A), (242)

~f(t, ·) ∈ C1(R+; ~L2(Ω)). (243)

Then problem (55) – (61) has a unique strong (in t) solutions with values in the space

H1(Ω; ρ) :=
{
(Φ2; Φ1) : Φ1 ∈ H1

h,S1
(Ω1), Φ2 = Φ21 + Φ22,

Φ22 ∈ H1
h,S2

(Ω2) ⊂ H1
Ω2

, Φ21 ∈ H1
Ω2

, ∆Φ21 ∈ (H1
Ω2

)∗,
∂Φ21

∂n
= 0 (on S2),

∂Φ21

∂n
= 0 (on Γ),

∂Φ22

∂n
=

∂Φ2

∂n
=

∂Φ1

∂n
∈ (H1/2

Γ )∗ (on Γ)
}

, (244)

i.e., such functions Φ1(t, x) and Φ2(t, x) that the following properties are valid.
10. Φ2(t, x) = Φ21(t, x) + Φ22(t.x) with ∆Φ21(t, x) ∈ C(R+;H1

Ω2
) and Φ22(t, x) ∈

C(R+; H1
h,S2

(Ω2));
20. Φ2(t, x) ∈ C2(R+;H1

Ω2
);

30. for any t > 0 equation (56) holds and any term in it is a continuous function in t

with values in H1
Ω2
;

40. Φ1(t, x) ∈ C(R+; H1
h,S1

(Ω1)) and
∂Φ1

∂n
|Γ=

∂Φ2

∂n
|Γ=

∂Φ22

∂n
|Γ∈

C(R+; D(C−1/2Bσ));
50. Φ1(t, x) and PΓΦ2(t, x), x ∈ Γ, belong to the space C2(R+;H1/2

Γ ) and equation
(59) holds for any t > 0;

60. initial conditions (60), (61) hold, i.e.,

Φi(0, x) = Φ0
i (x),

∂

∂t
Φi(0, x) = Φ1

i (x), x ∈ Ωi, i = 1, 2. (245)

Proof. If conditions (239) – (243) hold then, as it is easy to see, initial conditions (232),
(233) are valid in problem (208) – (211). Indeed, according to Subsection 3.2 (see (98)),
we have

Φ2(t, x) = Φ21(t, x) + Φ22(t, x), Φ22(t, x) = T2ζ(t, x) (Problem 2), (246)

Φ21(t, x) =: η(t, x) (see (100)), Φ1(t, x) = T1ζ(t, x) (Problem 1). (247)

It follows from (246), (247) and (239) – (243) that all conditions of Theorem 9 are
fulfilled. In particular, η(0) = η0 ∈ D(A3/2) since Aη0 = −∆Φ0

21 ∈ H1
Ω2

= D(A1/2),
ζ0 ∈ D(C−1/2Bσ), ζ1 ∈ D(B1/2

σ ), η1 = Φ1
21 ∈ D(A) and (243) is the same as (233).
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It follows from Theorem 9 that problem (208) – (211) has a unique strong solution with
values in D(A1/2) ⊕ D(C−1/2). Then η(t) = Φ21(t, x) ∈ C(R+;D(A3/2)) and Aη(t) =
−∆Φ21(t, x) ∈ C(R+;H1

Ω2
). Next, since ζ(t) ∈ C(R+;D(C−1/2Bσ)) then, using solutions

properties of auxiliary Problems 1 and 2, we conclude that

Φ22(t, x) = T2ζ(t) ∈ C(R+;H1
h,S2

(Ω2), Φ1(t, x) = T1ζ(t) ∈ C(R+;H1
h,S1

(Ω1).

Therefore
Φ2(t, x) = Φ21(t, x) + Φ22(t, x) ∈ C(R+; H1

Ω2
),

∆Φ2(t, x) = ∆Φ21(t, x) ∈ C(R+;H1
Ω2

).

From equation (208) and Theorem 8 it follows also that

Φ2(t, x) = η(t) + T2ζ(t) = Φ21(t, x) + Φ2(t, x) ∈ C2(R+; H1
Ω2

), (248)

and from equation (209) we see that

−ρ2PΓγ2η(t) + PΓ(ρ1C1 + ρ2C2)PΓζ(t) + PΓ(ρ1Φ1 − ρ2Φ2) ∈ C2(R+; H1/2
Γ ),

PΓ(ρ1Φ1 − ρ2Φ2) ∈ C2(R+;H1/2
Γ ) (249)

(see (238)). It follows from (248) and embedding theorem that Φ2 |Γ∈ C2(R+; H1/2
Γ ).

Then from (249) we conclude that Φ1 |Γ∈ C2(R+; H1/2
Γ ). Besides, we know that

∂Φ1

∂n
|Γ=

∂Φ2

∂n
|Γ=

∂Φ22

∂n
|Γ=: ζ(t) ∈ C(R+;D(C−1/2Bσ)). (250)

Note, at last, that introduced functions Φ1(t, x) and Φ2(t, x) are solutions to equation
(55) and (56) (all terms in (56) are continuous in t functions with values in H1

Ω2
),

kinematic condition (59) (all terms are from C(R+;H1/2
Γ )) and boundary conditions

(57). Besides, initial conditions to problem (55) – (61) are fulfilled. ¤

6.3. On solvability of the initial boundary value vector problem. Above proved
theorems give us opportunity to prove theorem on unique solvability of an initial bound-
ary value vector problem (8) – (15) on small motions of a hydrosystem „fluid – gas”.

Theorem 11. Let in problem (8) – (15) the following conditions be fulfilled,

~w0
1 = ∇Φ0

1 + P1,0 ~w0
1 ∈ ~L2(Ω1), ∇Φ0

1 ∈ ~Gh,S1(Ω1), (251)

~w1
1 = ∇Φ1

1 + P1,0 ~w1
1 ∈ ~L2(Ω1), ∇Φ1

1 ∈ ~Gh,S1(Ω1), (252)

~w0
2 = ∇Φ0

2 + P2,0 ~w0
2 ∈ ~L2(Ω2), ∇Φ0

2 ∈ ~G(Ω2), (253)

~w1
2 = ∇Φ1

2 + P2,0 ~w1
2 ∈ ~L2(Ω2), ∇Φ1

2 ∈ ~G(Ω2), (254)
~f ∈ C1(R+; ~L2(Ω)), (255)

where initial potentials Φ0
i , Φ1

i , i = 1, 2, have, as in Theorem 10, properties (239) –
(242).

Then problem (8) – (15) has a unique strong solution with values in the space ~L2(Ω) :=
~L2(Ω1) ⊕ ~L2(Ω2). Namely, there exist functions ~wi(t, x), pi(t, x), i = 1, 2, such that
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equations (8) and (9) hold; all terms in the first equation (8) are functions in t with
values in ~L2(Ω1); all terms in the first equation (9) are functions to in t with values in
~L2(Ω2); all terms in the second equation (9) are functions in t with values in H1

Ω1
.

Further, kinematic condition (11) holds in the space C(R+;D(C−1/2Bσ)) (i.e., Bσζ ∈
C(R+; H1/2

Γ )), dynamic condition (12) hods in C(R+;H1/2
Γ ), and initial conditions (15)

are fulfilled.

Proof. 1). It follows from (255) and (251), (252) that problem (31) has a unique solution

~v1 = P1,0 ~w0
1 +

t∫

0


P1,0 ~w1

1 +

s∫

0

P1,0
~f(ξ) dξ


 ds =

= P1,0


~w0

1 + t~w1
1 +

t∫

0

ds

s∫

0

~f(ξ) dξ


 ∈ C3(R+; ~J0(Ω1)) (256)

and, by (32),

∇ϕ1 := ρ1P1,0,Γ
~f ∈ C1(R+; ~G0,Γ(Ω1)). (257)

2). Similarly, from (41) we have

~v2 = P2,0


~w0

2 + t~w1
2 +

t∫

0

ds

s∫

0

~f(ξ) dξ


 ∈ C3(R+; ~J0(Ω2)). (258)

3). Since initial potentials Φ0
i , Φ1

i , i = 1, 2, have properties (239) – (242) (and by
(255)), then assertions of Theorem 10 hold. In particular, Φ2(t, x) ∈ C2(R+; H1

Ω2
). There-

fore,

∇p2 := ρ2

(
∂2

∂t2
∇Φ2 −∇F2

)
∈ C(R+; ~G(Ω2)), (259)

and then equation (40) holds and any term in it is a function in t with values in
C(R+; ~G(Ω2)).

4). It follows from this property and equation (59) that

Φ1 |Γ=: ϕ1 ∈ C2(R+; H1/2
Γ ). (260)

Consider now auxiliary Zaremba problem

∆Φ1 = 0 (in Ω1),
∂Φ1

∂n
= 0 (on S), Φ1 = ϕ1 (on Γ). (261)

It is known (see, for instance, [9], p. 107), that problem (261) has a unique generalized
solution Φ1 ∈ H1

h,S1
(Ω1) if and only if ϕ1 ∈ H

1/2
Γ . Moreover, if condition (260) holds

then

Φ1 ∈ C2(R+;H1
Ω1

). (262)
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5). Taking into account (262) and property ∇F1 = P1,h,S1
~f ∈ C1(R+; ~Gh,S1(Ω1)),

introduce, by (33),

∇̃p1 := ρ1∇F1 − ρ1
∂2

∂t2
∇Φ1 ∈ C(R+; ~Gh,S1(Ω1)). (263)

Then all equations (31) – (33) are valid for t > 0 and all terms in these equations are
continuous functions in t with values in ~J0(Ω1), ~G0,Γ(Ω1) and ~Gh,S1(Ω1), respectively.
From this it follows that functions

~w1 = ~v1 +∇Φ1, ∇p1 = ∇̃p1 +∇ϕ1 (264)

(see (27) – (30)) are solutions to equation (8) and all terms in it are functions in t with
values in ~L2(Ω1). Besides, the second condition in (8) is also valid.

6). Introduce
~w2 = ~v2 +∇Φ2 (265)

and use properties (258), (259). Then we see that the first equation (9) holds and each
term is a function in t with values in ~L2(Ω2). Besides, the second equation (9) is valid
with terms from C(R+;H1

Ω2
).

7). It follows from (250) that

ζ := (~w1 · ~n)Γ = (~w2 · ~n)Γ =
(

∂Φ1

∂n

)

Γ

=
(

∂Φ2

∂n

)

Γ

∈ C(R+;D(C−1/2Bσ)). (266)

Then Bσζ ∈ C(R+;D(C−1/2)) = C(R+; H1/2
Γ ) and, by (263) – (265), (45), (59),

(p1 − p2)Γ = Lσζ ∈ C(R+; H1/2
Γ ). (267)

8). Thus, all equations (8) – (15) hold. In particular, ζ ∈ D(Bσ) and therefore condi-
tion (14) is valid; initial conditions (15) are also fulfilled by (256), (60), (61).

This proves the theorem. ¤

As a corollary of the Theorem 11 we have the following result.

Theorem 12. If conditions of Theorem 11 are fulfilled then the law on full energy balance
in the form (20) is valid, and this energy is a continuous function in t > 0.

If the following conditions,

(~w2; ~w1) ∈ ~G(Ω), div ~w0
2 ∈ L2(Ω2),

~w0
1 · ~n = ~w0

2 · ~n ∈ D(B1/2
σ ) = H1

Γ, ~f(t, x) ∈ C(R+; ~L2(Ω)), (268)

hold, then problem (8) – (15) has a generalized solution with continuous full energy, and
the law (20) also holds for this solution.

Proof. 1). If conditions of Theorem 11 are fulfilled, then we can repeat the same
transforms as in Subsection 2.2 and receive the law of full energy balance in the form
(20).
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2). Proof of the second part of the theorem follows from the fact that generalized
solutions with continuous full energy can be received on any segment [0, T ] by limit
transition from initial conditions (251) – (255), corresponding to strong solutions, to
initial conditions (268), corresponding to generalized one. We remark only that the
second condition (267) is equivalent to condition p2(x, 0) ∈ L2,Ω2 . ¤

6.4. Fourier series. On the base of Theorems 10 and 11 on existence of strong solutions
initial boundary value problems (55) – (61) and (8) – (15) and on the base of Theorems
6, 7 on basis properties of the system of eigenfunctions to spectral problems (63) – (68)
and (187) – (189) we can receive Fourier series for solutions to problem (55) – (61).

Remember, that eigenfunctions Φk := (Φ2k; Φ1k), k = 1, 2, . . ., to problem (63) – (68)
are solutions to the following spectral problem:

∆Φ1k = 0 (in Ω1), −∆Φ2k = λkc
−2Φ2k (in Ω2), (269)

∂Φ1k

∂n
= 0 (on S1),

∂Φ2k

∂n
= 0 (on S2),

∂Φ1k

∂n
=

∂Φ2k

∂n
=: ζk (on Γ), (270)

ζk = λkB
−1
σ PΓ(ρ1Φ1k − ρ2Φ2k) (on Γ),

∫

Γ

ζk dΓ = 0,

∫

Ω2

Φ2k dΩ2 = 0. (271)

These functions form an orthogonal basis in H1(Ω; ρ) (with squared norm (176)) and
have the following conditions on orthonormality:

2∑

k=1

ρm

∫

Ωm

∇Φmk · ∇Φml dΩm = δkl, (272)

ρ2c
−2

∫

Ω2

Φ2k · Φ2l dΩ2 +
∫

Γ

B−1
σ [PΓ(ρ1Φ1k − ρ2Φ2k)] · [PΓ(ρ1Φ1l − ρ2Φ2l)] dΓ = λ−1

k δkl.

(273)
Consider for simplicity the initial boundary value problem (55) – (61) for the case

of free motions, i.e., ~f(t, x) ≡ ~0. Then F1(t, x) ≡ 0, F2(t, x) ≡ 0. Represent solution
Φ = (Φ2(t, x); Φ1(t, x))t to problem (55) – (61) in the form

(
Φ2(t, x)
Φ1(t, x)

)
=

∞∑

k=1

ck(t)

(
Φ2k(x)
Φ1k(x)

)
, (274)

where ck(t) are anknown functions and Φk = (Φ2k; Φ1k)t, k = 1, 2, . . ., are solutions to
spectral problem (269) – (271) with properties (272), (273).

We put functions Φ2(t, x) and Φ1(t, x) from (274) into equations (55), (56) and bound-
ary conditions (57), (58). Further, we multiply the first relation on −ρ1Φ1l and integrate
over Ω1, the second one on ρ2Φ2l and integrate over Ω2. Finally, we act by B−1

σ from
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the left in (59), multiply on (ρ1Φ1k − ρ2Φ2k) and integrate over Γ. Using also boundary
conditions (270), (271), we have

0 =
∞∑

k=1

ck(t)


ρ1

∫

Ω1

∇Φ1k · ∇Φ1l dΩ1 − ρ1

∫

Γ

∂Φ1k

∂n
Φ1l dΓ


 ,

0 =
∞∑

k=1


c′′k(t)c

−2ρ2

∫

Ω2

Φ2k · Φ2l dΩ2 + ck(t)ρ2




∫

Ω2

∇Φ2k · ∇Φ2l dΩ2 +
∫

Γ

∂Φ2k

∂n
Φ2l dΓ





 ,

0 =
∞∑

k=1

c′′k(t)
∫

Γ

B−1
σ [PΓ(ρ1Φ1k − ρ2Φ2k)][PΓ(ρ1Φ1l − ρ2Φ2l)] dΓ+

+
∞∑

k=1

c′′k(t)
∫

Γ

∂Φ1k

∂n
(ρ1Φ1l − ρ2Φ2l) dΓ.

Adding the left and the right parts of these relations we receive the equality

0 =
∞∑

k=1

ck(t)


ρ1

∫

Ω1

∇Φ1k · ∇Φ1l dΩ1 + ρ2

∫

Ω2

∇Φ2k · ∇Φ2l dΩ2


+

+
∞∑

k=1

c′′k(t)


ρ2c

−2

∫

Ω2

Φ2kΦ2l dΩ2 +
∫

Γ

B−1
σ [PΓ(ρ1Φ1k − ρ2Φ2k)][PΓ(ρ1Φ1l − ρ2Φ2l)] dΓ


 ,

that with taking into account (272), (273) gives the equations

cl(t) + λ−1
l c′′l (t) = 0, l = 1, 2, . . . .

From this it follows that

ck(t) = ck0cos(ωkt) + ck1 sin(ωkt), ωk =
√

λk, k = 1, 2, . . . , (275)

and therefore the formal solution to problem (55) – (59) has the form
(

Φ2(t, x)
Φ1(t, x)

)
=

∞∑

k=1

(ck0cos(ωkt) + ck1 sin(ωkt))

(
Φ2k(x)
Φ1k(x)

)
. (276)

One can find coefficients {ck0}∞k=1 and {ck1}∞k=1 using the initial conditions (60), (61):

Φi(0, x) = Φ0
i (x),

∂

∂t
Φi(0, x) = Φ1

i (x), i = 1, 2. (277)

We have(
Φ0

2(x)
Φ0

1(x)

)
=

∞∑

k=1

αk

(
Φ2k(x)
Φ1k(x)

)
,

(
Φ1

2(x)
Φ1

1(x)

)
=

∞∑

k=1

βk

(
Φ2k(x)
Φ1k(x)

)
, (278)
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and, by (272),

αk =
2∑

j=1

ρj

∫

Ωj

∇Φ0
j · ∇Φ1k dΩj , βk =

2∑

j=1

ρj

∫

Ωj

∇Φ1
j · ∇Φ1k dΩj . (279)

Using (278), (279) and initial conditions (277), we have finally
(

Φ2(t, x)
Φ1(t, x)

)
=

∞∑

k=1

(
αkcos(ωkt) + βkω

−1
k sin(ωkt)

)
(

Φ2k(x)
Φ1k(x)

)
. (280)

This solution is a strong one with values in H1(Ω; ρ) if initial functions (277) have
properties as in Theorem 10, i.e., properties (239) – (242).

On the base of the above proved results and (280) one can represent solution to the
initial boundary value vector problem (8) – (15).

6.5. On sufficient condition for instability on small motions of the system
„fluid – gas”. Remember that up to this moment we used an assumption on statical
stability of the system „fluid – gas” (see (69)), i.e., the operator Bσ is positive definite.
Consider now the case when Bσ is only bounded from below and γ < 0 (Lemma 1).
Then, as in Lemma 2 and assertions below, the operator Bσ has a discrete spectrum
{λk(Bσ)}∞k=1 ⊂ R. But now its eigenvalues have the following properties (with taking
into account its multiplicities)

−∞ < γ 6 λ1(Bσ) 6 . . . 6 λκ(Bσ) < 0 = λκ+1(Bσ) = . . . = λκ+q(Bσ) <

< λκ+q+1(Bσ) 6 . . . 6 λk(Bσ) 6 . . . . (281)

Consider (in assumption, that κ > 1, q > 0 in (281)) solutions to homogeneous
problem (218) in the form of the oscillations:

y(t) = eiωty, y ∈ D(A). (282)

Then for amplitude elements y we have the spectral problem

Ay = λBy, y ∈ D(A), λ = ω2, (283)

where the operator matrices A and B are defined by (221).
Introduce the operator

BC := C−1/2BσC−1/2 (284)

on the natural set

D(BC) := {ζ̃ ∈ L2,Γ : ζ ∈ D(C−1/2) = H
1/2
Γ , C−1/2ζ̃ ∈ D(Bσ), BσC−1/2ζ̃ ∈ D(C−1/2)}.

(285)
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Lemma 9. The operator BC has a discrete real spectrum {λk(BC)}∞k=1 with limit point
+∞. The eigenvalues {λk(BC)}∞k=1 have the same properties as eigenvalues of the oper-
ator Bσ (see (281)):

−∞ < λ1(BC) 6 . . . 6 λκ(BC) < 0 = λκ+1(BC) = . . . =

= λκ+q(BC) < λκ+q+1(BC) 6 . . . 6 λk(BC) 6 . . . . (286)

Proof. Consider the eigenvalue problem

BCξ = C−1/2BσC−1/2ξ = λξ. (287)

If ξ ∈ D(BC) then ξ ∈ D(C−1/2) and

Bσ ξ̃ = λCξ̃, ξ̃ = C−1/2ξ ∈ D(Bσ). (288)

Conversely, if ξ̃ is a solution to equation (288) then Bσ ξ̃ = BσC−1/2ξ = λC1/2ξ ∈
D(C−1/2) and equation (287) holds.

If λ = 0 in problem (288) then ξ̃ ∈ KerBσ 6= {0} and therefore λ = 0 is a q – multiple
eigenvalue of the operator BC . Introduce the resolution

L2,Γ = L̂2,Γ ⊕Eq, Eq := KerB, dimEq = q < ∞, (289)

and use the fact that in this resolution problem (288) has the form

B̂σ ξ̂ = λ(Cξ̂ + Cξq), (290)

ξ̂ := P̂ ξ̃ = P̂ ξ̂ ∈ L̂2,Γ, ξq = Pq ξ̃ = Pqξq ∈ Eq, (291)

where P̂ and Pq are orthoprojections on the subspaces (289).
If we will act from the left in (290) by the operators P̂ and Pq we will have the

following system of equations

B̂σ ξ̂ = λ(P̂CP̂ ξ̂ + P̂CPqξq), (292)

0 = λ(PqCP̂ ξ̂ + PqCPqξq). (293)

Since λ 6= 0 and PqCPq is a q – dimentional positive operator (q× q – matrix) then from
(293) one can find

ξq = −(PqCPq)−1(PqCP̂ )ξ̂, (294)

and therefore (292) takes the form

B̂σ ξ̂ = λĈξ̂, Ĉ := P̂CP̂ − (P̂CPq)(PqCPq)−1(PqCP̂ ). (295)

Here the operator B̂σ has a trivial kernel, KerB̂σ = {0}, and Ĉ is a compact and
positive (self – adjoint) operator. (Proof of the last properties see in [9], p. 47 – 48.)
Further, the operator B̂σ has a discrete spectrum

σ(B̂σ) = {λk(Bσ)}κk=1 ∪ {λk(Bσ)}∞k=κ+q+1, (296)

where {λk(Bσ)} are eigenvalues (281).
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Represent L̂2,Γ as an orthogonal sum

L̂2,Γ = Eκ ⊕ Ľ2,Γ, (297)

where Eκ is a κ – dimentional subspace with an orthogonal basis {uk(Bσ)}κk=1 corre-
sponding to eigenvalues {λk(Bσ)}κk=1 and Ľ2,Γ is an orthogonal complement (with the
basis {uk(Bσ)}∞k=κ+q+1). Then the operator B̂σ has the form

B̂σ =
∣∣∣B̂σ

∣∣∣
1/2

Jκ
∣∣∣B̂σ

∣∣∣
1/2

,
∣∣∣B̂σ

∣∣∣ :=
(
(B̂σ)2

)1/2
, (298)

Jκ = diag(−Iκ; Ǐ) = J−1
κ = J∗κ. (299)

It follows from above that
∣∣∣B̂σ

∣∣∣ À 0 and therefore there exist bounded and positive

operators
∣∣∣B̂σ

∣∣∣
−1

,
∣∣∣B̂σ

∣∣∣
−1/2

.
Thus, problem (295) takes the form

∣∣∣B̂σ

∣∣∣
1/2

Jκ
∣∣∣B̂σ

∣∣∣
1/2

ξ̂ = λĈξ̂, (300)

and after substitution ∣∣∣B̂σ

∣∣∣
1/2

ξ̂ = η (301)

one can receive the equation

Jκ

(∣∣∣B̂σ

∣∣∣
−1/2

Ĉ
∣∣∣B̂σ

∣∣∣
−1/2

)
η = µη, µ = λ−1. (302)

It is evident that here the operator Jκ

(∣∣∣B̂σ

∣∣∣
−1/2

Ĉ
∣∣∣B̂σ

∣∣∣
−1/2

)
is a Jκ – positive com-

pact operator, i.e., it is self – adjoint and positive in the indefinite scalar product

[η, ζ] := (Jη, ζ)0 . (303)

In other words, problem (302) is a spectral problem in the Pontriagin space Πκ for
compact and positive operator. Therefore, by Theorem from [28], see also [29], [30], prob-
lem (302) has exactly κ negative eigenvalues (with account of multiplicities). Another
eigenvalues {µk}∞k=κ+1 of problem (302) are positive with limit point at 0.

These considerations prove the Lemma, i.e., properties (286). ¤

On the base of Lemma 9 we come back to problem (283) under assumptions (281).

Theorem 13. If inequalities (281) are fulfilled then problem (283) has exactly κ negative
eigenvalues (with account of multiplicities) and exactly q zero – eigenvalues. The other
eigenvalues of problem (283) are positive and have limit point at infinity.

Proof. It is the same as proof of Lemma 9. Namely, we consider problem (283) with

A = diag(c2ρ2A;BC) (304)
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and the operator B from (221) which is bounded and positive definite (see Lemma 8).
Since A À 0 and A−1 ∈ S∞ then the operator A has a discrete spectrum

σ(A) = {c2ρ2λk(A)}∞k=1 ∪ {λk(BC)}∞k=1, (305)

where λk(BC) have properties (286). Therefore one can repeat proof of Lemma 9 not to
equation (288) but to equation (283). It proves the theorem. ¤

As a corollary of Theorem 13 we have the following resulting assertion.

Theorem 14. (inverse of Lagrange Theorem on Stability).
If the operator Bσ of potential energy of the system „fluid – gas” is not statically

stable in linear approximation, i.e., condition (69) is not fulfilled and Bσ has properties
(281) with κ > 1 and q > 0, then problem (283) has at least one negative eigenvalue
λ = ω2 < 0. Therefore there exists solution y(t) to homogeneous problem (218) such that

y(t) = y exp(t
√
| λ |), y ∈ D(A), (306)

i.e., this solution exponentially increases in time. ¤

6.6. The case of motions of the system „heavy fluid – gas”. The considered above
problem contains as a special case the problem on small motions of a system „heavy fluid
– gas” when surface tension does not taken into account. This last problem is investigated
in [21]. Here we mention briefly corresponding results for the case.

First of all, if surface forces do not act and we must take into account only gravity
then a free surface of a fluid is horizontal at equilibrium state, i.e., it is perpendicular
to direction of gravity action.

Considering small oscillations of the system we must put σ = 0 in problem (8) –
(15). In this, we have ~n = ~e3 on Γ, Lσζ must be changed by L0ζ := (ρ1 − ρ2)gζ,
because cos(~n,~e3) = 1. Besides, condition (14) must be omitted. Therefore the operator
Bσ |σ=0=: B0 of potential energy has the form (see (51))

B0 = (ρ1 − ρ2)gI, D(B0) = L2,Γ. (307)

Since the operator B0 is positive definite (ρ1 − ρ2 > 0, g > 0) then the system „heavy
fluid – gas” is statically stable.

In spectral problem (3) – (68) we now must change Bσ by B0, and the functionals
(70) and (123) have the forms

F1(Φ1; Φ2) =

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

ρ2c
−2

∫

Ω2

|Φ2|2 dΩ2 + ((ρ1 − ρ2)g)−1 ‖PΓ(ρ1Φ1 − ρ2Φ2)‖2
0

, (308)
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F2(Φ1; Φ2) =

c2ρ2

∫

Ω2

|∆Φ2|2 dΩ2 + (ρ1 − ρ2)g
∫

Γ

|ζ|2 dΓ

2∑

k=1

ρk

∫

Ωk

|∇Φk|2 dΩk

, (309)

and conditions (124) must be taken into account. The main spectral problem (107) now
has the some form with substitution (g(ρ1 − ρ2))

−1/2 instead of B
−1/2
σ .

For the case σ = 0 Theorems 1, 2, 3, 4, 5, 6, 7 are valid also (with corresponding
modifications). As in Subsection 5.4, we have here acoustic and surface waves, but now
the asymptotic behavior of the eigenvalues of surface waves has another form.

In problem on strong solvability of an initial boundary value problems (Section 6) we
come again to Cauchy problem (218) for hyperbolic equation in Hilbert space H(Ω) =
L2,Ω2 ⊕ L2,Γ, but now the operator matrix A has not form (221) but a new form

A := diag(c2ρ2A; (g(ρ1 − ρ2))
−1 C−1) (310)

with

D(A) = D(A)⊕D(C−1). (311)

It is evident that the operator A is positive definite and self-adjoint on domain D(A).
Therefore Theorems 9 – 12 with new assumptions,

ζ0 ∈ D(C−1/2) = H
1/2
Γ , ζ1 ∈ L2,Γ, (312)

and with corresponding simplified assertions hold. For instance, in Theorem 11 we have
instead of (266), (267):

ζ = (~w1 · ~n)Γ = (~w2 · ~n)Γ ∈ C(R+; H1/2
Γ ),

(p1 − p2)Γ = PΓ(ρ1Φ1 − ρ2Φ2)Γ = g(ρ1 − ρ2)ζ ∈ C(R+; H1/2
Γ ).

At last, new considered system „heavy fluid – gas” is dynamical stable, it has a dis-
crete positive spectrum {λk}∞k=1, i.e., λk = ω2

k, where 0 < λ1 6 λ2 6 . . . 6 λk 6
. . . , λk −→ +∞ (k −→∞). It means that all frequencies of oscillations are real.

Remark in conclusion that on the base of problem considered in the paper the authors
plan to investigate correspondent problems on small oscillations for rotating system
consisting of ideal fluid and a gas, viscous fluid and gas, and all the same problems for
nonlinear case.

Authors are thankfull to prof. V.A. Solonnikov for discussions on these problems and
usefull comments.
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