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SMALL MOTIONS AND EIGENOSCILLATIONS OF A
SYSTEM ,FLUID - GAS” IN A BOUNDED REGION'

1. INTRODUCTION.

1.1. To the history of the problem. The problem on small motions of an ideal fluid
in a partially filled vessel was a subject of numerous investigations at the second half of
the 20" century. We mention here only monographs [1] — [4] corresponding to the case
when a fluid is heavy and monographs [5] — [7]| for the so-called capillary fluid, i.e., a
fluid that moves under action not only gravity but surface tension on a free surface (zero
— gravity conditions).

For capillary fluid static problems were studied in the first parts of monographs [5] —
[7]. Small motions and eigen oscillations were considered in the second parts of 5] —
[7] and in monographs [8] — [10]. Here authors used methods of functional analysis,
the theory of differential equations in Hilbert space, spectral theory of operators and
operator functions.

In the paper, we study a new class of problems where immovable container not par-
tially filled by an incompressible fluid or the system of incompressible ones but the case
when the first fluid is incompressible ideal and the second one is a barotropic gas. The
first papers on this topics are published in works [11] — [16] and [17] — [20].

This paper is written on the base of Chapter 1 of phD — thesis [21| where a heavy ideal
fluid and a gas was considered. Here we use the operator approach which is discribed in
detail in [8] — [9] for the case of one ideal incompressible capillary fluid or for the case
of a system of such fluids.

1.2. Main results of the paper. In Section 2, we formulate the statement of the prob-
lem on small motions and eigenoscillations of a system ,ideal incompressible capillary
fluid — gas”. We consider preliminary an equilibrium state of the system and discribe
the main parameters of the problem, in particular, parameters connected with surface
tension and barotropic gas.

!The first author of the paper is gratefull to prof. V.A. Solonnikov for invitation to Ferrara
University (Italy) at June, 2004, for joint collaborations.
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After that we formulate the statement of the initial boundary value problem on small
motions of a system ,fluid — gas” (see (8) — (15)). We derive the law of full energy
balance for classic solution of this problem (see (20)). The next step is connected with
using method of orthogonal projecting of vector equations of the problem on subspaces
of the spaces La(9) and Ly(€3) for vector functions described displacement fields of
a fluid and a gas. It gives us some trivial relations (see (31), (32), (41)) and nontrivial
equations (see (33), (40) and boundary conditions) in subspaces of the spaces Ly(£;)
and Lo (Q2). This approach allows us to reformulate the initial boundary value problem
(8) — (15) in a new form (see (55) — (61)) for finding of two scalar functions: displacement
potentials ®1 and @5 for a fluid and a gas.

We formulate also the problem on eigenoscillations of the system, i.e., on finding solu-
tions of homogeneous problem depending in time ¢ according to the law exp(iwt) where
w is a frequency of oscillations. Then spectral problem (63) — (68) arises with spectral
parameter A = w?. The statement of this problem contains the potential energy operator
B, (see (51) and Lemma 1), and we suppose that investigated system is statically stable
in linear approximation, i.e., the operator B, is positive definite (see (69)).

In Section 3, we investigate the problem on eigenoscillations on the base of auxiliary
boundary value problems and corresponding Hilbert spaces and its equipments. We
introduce the operators of these problems (Subsection 3.1) and transit to matrix operator
equation (or the system of two operator equations) in orthogonal sum of Hilbert spaces
(see (101), (102) and (107) — (109)). We study properties of entries of these operator
matrices and on this base we prove the theorem on the structure of the spectrum and
properties of eigenfunctions (Theorem 2).

In Section 4, we consider variation principles for eigenvalues (Theorems 128 — 130) and
show that the variation principle in the form (165) is the most convenient in applications
when we use Ritz method for calculations of eigenvalues.

In Section 5, we investigate the orthogonal basis properties of eigenfunctions and
prove that these functions form an orthogonal basis in some Hilbert space (Theorems
6, 7). On the base of variation principles we consider also some limit cases (Subsection
5.3) connected with transit to one incompressible fluid (without of a gas), to the case,
when a gas transforms to an ideal incompressible fluid, or to the case, when only one
barotropic gas fills all the region. At last, we consider briefly the problem on surface and
acoustic waves arising in our system ,fluid — gas” (Subsection 5.4).

Section 6 is devoted to investigation on the problem of existence of strong (according
to variable t) solutions to the initial boundary value problems in a vector and in a
scalar forms (see (8) — (15) and (55) — (61)). We prove that our problem is reduced to
investigation of Cauchy problem for some hyperbolic equation in Hilbert space. As a
result, we prove the theorem on strong solvability of the initial boundary value problem
for operator equation in orthogonal sum of Hilbert spaces (see (208) — (211), Theorem
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9), for scalar problem (55) — (61) (Theorem 10) and for initial vector boundary value
problem (8) — (15) (Theorem 11). At last, for strong and generalized solutions to these
problem we prove the law of full energy balance (Theorem 12).

Further, using basis properties of eigenfunctions, we represent a strong (and formal)
solution to problem (55) — (61) by Fourier series on eigenfunctions of the spectral problem
(63) — (68) (Subsection 6.4).

If condition of the static stability in linear approximation is not fulfilled and instead
of property (69) the operator B, of potential energy is only bounded from below with
lower bound negative then considered system ,fluid — gas” is unstabled. In Subsection
6.5 we prove (Theorems 13, 14) that in the case our system is dynamical unstable.

At last, in Subsection 6.6 we briefly consider a problem on small motions and
eigenoscillations of a system ,fluid — gas” for the case when surface tension do not taken
into account, i.e., for a heavy fluid. This problem is considered more explicitly in work
[21].

2. THE STATEMENT OF THE PROBLEM.

In this section, the mathematical statement of the initial boundary value problem on
small motions and eigenoscillations of a hydrosystem ,fluid — gas” is formulated. We write
down the equations, boundary value and initial conditions. The transition from vector
problem to scalar one is realized. The corresponding spectral problem is also formulated.

2.1. Equations of the initial boundary value problem. Consider a hydrodynamical
system consisting of two nonmixing ideal fluids. The first of them is incompressible and
the second one is compressible that is a gas. We suppose that fluids fulfill an arbitrary
region € R? and we will take into account gravitation forces with acceleration § and
surface tension. At equilibrium state a lower fluid is incompressible and has a constant
density p; > 0 and upper compressible fluid (gas) has a density ps < p;. The lower fluid
occupides a region 27 C  bounded by a part S7 of the rigid wall S := 92 and by the
surface I' which is an equilibrium one dividing a fluid and a gas. Respectively, a gas
occupies a region s = Q\Q bounded by the surface I" and by a part So = S\S;y of the
rigid wall S.

We introduce the cartesian coordinate system Oxixox3 by such a way that § = —gé3,
where €; is an ort of the axis Ox;, 1 = 1,2, 3.

At the equilibrium state pressures in a fluid and in a gas are changed along the vertical
axis Ox3 and have the form

Pio(x) = Pig(x3) = —pigr3z +c¢;, in Q;, i=1,2, (1)

where ¢; are constants. At the equilibrium surface I" the Laplace condition for the jump
of pressures must be fulfilled:

Piog—Pyo=—0(ki +ks) on T. (2)
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Here o0 > 0 is a coefficient of surface tension on the boundary ,fluid — gas”, k1 and ko
are the main curvatures of I'. On the contour JI' the condition of Dupre — Yung must
be valid:

ocosd = o1 — 0y, (3)
where ¢ is a wetting angle, 0 < § < m, 01 > 0 is a corresponding coefficient on the
boundary ,fluid — rigid wall” and oy > 0 is a corresponding one on the boundary ,,gas —
rigid wall”.

We suppose that the volume V' of the fluid is given, that is

[aa=v. ()
1951
and then conditions (1) — (4) allows us to find an equilibrium surface I' and regions €
and Qg (see, for instance, the monographs [5] — [7]).

Suppose that this static problem is solved and consider small motions of the hy-
drosystem near the equilibrium state. We introduce unknown functions wj (¢, x), i = 1,2,
x € €, which are displacements fields in a fluid and a gas, and dynamic pressures p;(t, =)
which are differences between full pressures P;(t,z) and static ones P; o(z3).

Let pa(t,x) be a density of a moving gas. Then ps = p2 + n(t,x), where n(t,z) is a
new anknown function. For barotropic gas we have (see, for instance, [22], pp. 299-300)

AP
pa = <d~2> -m =:c*n, (5)
p2=p2

where ¢* is a squared sound velocity. Therefore from the continuouty equation (with
velocity field up = Ows/0t),

0p2 _ 0wy

— +di — | =0

ot Y <p 2ot ’

one can find after linearization the relation

2

0 .
5 (pg + CQPQdIV’LUQ) =0. (6)

For w(t,2) = 0 we must have py(t, 2) = 0, and then from (6) we receive
p2 + C2p2diV2172 =0 in QQ. (7)

(If ¢ — oo then it follows from (7) that divs, = 0, that is the second fluid becomes
incompressible.)

Let us write down equations, boundary value and initial conditions of the problem on
small motions of a hydrosystem ,jideal fluid — gas”. With account of (7) we have

0y - - .
plw + Vpl = p1f7 leU)l =0 (m Ql), (8)

0?1

02W + Vpy = pgf, P2 + 02,02 divwy =0 (in Qo), (9)
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_’1-7_1)20 (on Sl), _'2-’17[:0 (on SQ), (10)
ﬁl-ﬁ:wﬁ-ﬁ::C (on F), /CdF—O, (11)
p1—p2=LsC:=a,( —cAp( (on T), (12)
ay = ag(z) := (p1 — p2)gcos(ii,é3) — o(k? +k3), z €T, (13)

o¢ B _ kr — kgcosd
e +x¢=0 (on IT), = s (14)

S -0 ow; 1 .

w;(0,2) =0 (x), 5 “0,2) =wi'(x), i=1,2. (15)

Here the first equations in (8) and (9) are the linearized Euler equations for dis-
placements fields w; and dynamic pressures Pi; f =f (t x) is a known function of an
additional external small field of mass forces: F = g+ f ; T is an external unique normal
to Q1; ¢ =((t,z) (x €T) is a displacement (along the normal 77) of a moving surface
I' =T'(¢) in process of oscillations; Ar is a Laplace — Beltrami operator, acting on I'; a,
is a known function that is defined by the equilibrium state; € is a unique normal vector
to JI" in the plane tangential to I" on JT'; kpr and kg are the curvatures of I' and S in
a cross section of I' and S by the plane that is perpendicular to OT'. (One can see the
derivation of conditions (12) — (14) in [9], pp. 201 — 203.) The second condition in (8)
is a condition of incompressibility for the displacement field wi, the second condition
in (9) is a condition of compressibility for barotropic gas (see (7)). Conditions (10) are
so-called nonleaking conditions on the rigid wall S. The first condition (11) is a kine-
matic condition on I', and the second one in (11) is a condition of volume conservation
of the fluid. Condition (12) is a linearized condition for pressure jump on moving surface
I'(t); the corresponding nonlinear condition has the same form as (2). Condition (14) is
a corollary of the fact, that wetting angle §, 0 < § < 7, does not changed in process of
oscillations (see [9], p. 201 — 203).

Thus, the problem on small motions of a hydrosystem ,fluid — gas” consist of finding
displacements fields wj(t, z) and pressures fields p;(¢, z) from equations, boundary value
and initial conditions (8) — (15).

2.2. The law of full energy balance. We will derive, on the base of equations, bound-
ary value and initial conditions of problem (8) — (15), the law of full energy balance for
investigated hydrodynamical system. This system is conservative, then, if additional
external forces are absent ( f (t,z) = 0), it will be the law of full energy conservation.

Suppose that problem (8) — (15) has a classical solution, that is, all unknown functions
and its derivatives that are located in equations, boundary value and initial conditions,
are continuous functions.
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From the first equation (8) and with account of the second one and the first condition
(10) we have

0%y, Ow o o,
LT, = pl/‘ @ o, ——/Vm T 40, +

& ot

S T

Q1

+P1/f %dQl /diV( 88 >dQ1+P1/f %dm:
QO

1

(9 ow
/p1 ot nd5’+p1/f 7d91 /p1 ot ndF+p1/f 7dQl

o (951 I (951
From the first equation (9) with account of the second one and the second condition

(10) we derive analogously

621172 Owy d / ‘ 8?1}2
P2

C 22 00
P2 | "o ot T W
Qo

> Owy owx 1 Opo
+ —2dQ —2 ) dQy — — Qo+
p2/f ey dQy = /d1V< 9 >d2 pgcQ/m 6td2

2

8w o = o
+,02/f —d /P2 atQ'n 2p02dt/|p2‘ d92+p2/f —2d

Addlng the left and the right hand sides of these 1dent1t1es we receive the identity

8w1 8w2
- dQ)
dt P1/‘ 1+ Pz/’

owy
+/(p1 p2) —dl“ Zpk/ —w’“ Q.. (16)
r

We use now the First Green’s Formula for Laplace — Beltrami operator (see, for
instance, [23], p. 129, [24], p. 276):

0wy
dQ) = — L —=dQ
2 /Vp2 5 2+
Q

1
%+ 5 2/\p22 Q¢ +
p2c
Q2

ou
— | Aru-vdl'= [ Vru-Vrodl — | —vdS. (17)
[ o [

Then from (12) — (14) we have

Jor-mGar= €05 i =350, (15)

r r
where

(€On, = [ o190 +ar ] ar +a f xIc ds. (19)

r or
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Therefore, it follows from (16) — (19) that the identity

1 2
szk/\ (.2)
k=1

5 (C(2),C(6,2)) 5, =

(0,2) 49 + 3 (¢(0,),(0,2)5, +

2
1
=53 [t
k=1 G

Qo

2 t
+> pr / / f(t,x)-aat (t,x)dSy, | dt (20)
Q

is valid. It is the law of full energy balance for considered hydrodynamical system. Note,
that here

p2(0,2) = —poc?diva’ (),  ¢(0,2) = (i °(x) - 7d) [p= (" (x) - ). (21)

The first term from the left hand side of (20) is a kinetic energy of the system, the
second and the fhird ones is a potential energy, consisting of the term for compressible
gas and the term for free surface and acting gravity and surface tension on it. From the
right hand side in (20) we have the sum of the full energy at the initial moment ¢ = 0
and the work of an external force f(t,) on the interval [0, ].

2.3. Using the method of orthogonal projecting. Transition to the problem
with scalar unknown function. For investigation of problem (8) — (15) we use the
method of orthogonal projecting (see, for instance, [9], Subsection 6.3.3). Introduce
Hilbert spaces La(€), i = 1,2, with inner products

(@, 7)q, == / (x) - 7(x)d (22)

and corresponding norms. For the space Ly (1) (ideal incompressible fluid) we take into
consideration the following orthogonal decomposition (see [9], pp.117 — 118):

Lo(0) = Jo(1) ® Gor () ® Ghs, (1), (23)
Jo(Q) == {176 La(): divi=0 (in @), 7-7=0 (on anl)}, (24)
Gor(Q) == {ﬁ € Lo(): @=Vy, ¢=0 (on r)} : (25)

Grs, () = {w € Ly(): @=V® A =0 (in Q)

0P

I =0 (on S1),

(26)

—
A
o
)1
I
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It follows from (8) and (10) that if w0} (¢, z) is a function in variable ¢ with values from
EQ (Ql) then

Wi (t,x) = vi(tx) + Vei(t, ) € Jo() @ Ghs, (), (27)
Ti(t,x) € Jo(Q), V&i(t,z) € Ghg (). (28)
If Vpy(t,z) is a function in ¢ with values from Ly(€2;) then
Vpi(t, ) = VBi(t, x) + Vi (t,2) € Ghs, (1) ® Gor(), (29)
Vit z) € Grs, (1), Ver(t,z) e Gor(h). (30)

Let Pi, Pior and Py 5, 5, be the orthoprojections on the subspaces (23), respectively.
If we will use representations (27) and (29) in the first equation (8) and will act by these
projections from the left, we will have relations

82171 - avl

Mgz = p1Piof, ©(0,2) = P ouf, 5 ——(0,2) = Py o;; (31)
6+ chl = plpl,ojf; (32)

2
PLoa Vo, +Vpr =p1 P slf =: p1 V. (33)

It is evident that fields vi and Vi can be finded immediately from (31) and (32).
Therefore in further we must study only equation (33) and other equations and boundary
conditions.

Consider now EQ(QQ) and its decomposition

Ly(Q2) = G(Q2) @ Jo(Q2), (34)
G() = i € Lo() : 1 = Vb, /@dm —0\, (35)
Qo
Jo(Q2) := {Ue La(Q2): divi=0 (in Q), 7-7=0 (on 892)}. (36)

(Here and in (23) — (26) operations div e and (¢ - @) are understood in sense of distri-
butions, see, for instance, 9], pp. 111 — 114.)
If Wy (t, ) and Vpy(t, ) are functions in ¢ with values in Ly () then

wg(t,.%) = 172(t,$> + V@g(t,x), (37)
(t,x) € Jo(Qa), V&i(t,z) € G(Q), Vpalt,z) € G(Qa). (38)

Indeed, it follows from the second equation (9) and from (11) that

/p2 dQy = —p2c2/divw2 dQy = —pac / - dl = —pac /CdF =0. (39)

Q2 Qo r
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Introduce the orthoprojections P, ¢ and P» o on subspaces (34). Then, acting by these
orthoprojections from the left in (9) and using (37), (38), we will have relations

2

P2@V@2 + V2 = po P f =: p2VEy, (40)

0?1

- o o o
P gm = p2Paof, 2(0,3) = Pogu, = 12(0,2) = Py oy (41)

ot

It is evident that ¥5(t,z) is defined uniquelly from problem (41), and therefore in
further we must study equation (40) and others.

Let us transform boundary conditions (10) — (14) with taking into account (27), (29)
and (26), (34), (35), (38). First of all, instead of (10) we have now conditions

o®; 0Py
% =0 (On Sl), W =0 (On SQ), (42)
and conditions (11) have the form
0P; 0Py
— = = = I "= 0. 4
=G =), [car=o (43)
r
Further, it follows from (33) and (40) that
0*®;
pigm tpi=pifitalt) (in Qi i=12), (44)

where ¢;(t) are arbitrary functions in ¢. But from (39) and corresponding conditions for
&y and Fy (see (35)) we conclude, that cy(t) = 0. Then condition (12) can be rewritten
in the form

09 0*®
P1 8t21 - P28722 + Lo¢ = p1F1 — paFa +ei(t) (on T). (45)

Introduce Hilbert space Lo(I') with ordinary scalar product

(o = / ¢(x)n () dr. (46)
T

Then the last condition (11) can be written as

/ ¢dr = (¢, 1r)o =0, (47)
T

where 1r is a unique function defined on I'. It means that
C S LQI = LQ(F) &) {1F} (48)
Let Pr be the orthoprojection from Ly(I') onto Lo that is

Prp:=n— 0" /ndF, Vn € Lo. (49)
r
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Then Pr¢ = ¢ (see (47)), and acting by the operator Pr from the left in (45), we will
have the condition

0’°® ok

016721 ~ P23 (Pr®2) + BoC = p1F1 — p2PrFy  (on T). (50)

We took into account in (50) that conditions

/<I>1dF:/F1dF:O

r r
hold, see (26). By definition, the operator B, is defined by the law
B, = PrLoPr, D(By)=D(Ls) C Lar. (51)
Lemma 1. The operator B, with the domain
D(B,) = {C € H*(I)N Loy : gg +x¢=0 (on 8F)} (52)

is bounded from below self-adjoint operator acting in the space Lay. Its quadratic form

(see (19)) is

(Ba6.C)o = (€:0p, = [1o1Vec +alcPlar + § x o ar (53)
r ar
and there exists v € R such that

(€, Qp, Z7ICly. V¢ eDB,). (54)

These properties are valid for sufficiently smooth OI.
Proof. of the lemma is done in [9], p. 205. O
Transform now the second condition in (9). By (44), (35),(38),
0?® -
P2 = —,028T22 + ngg, (CQ(t) = 0), le’wg = A(I)Q.

Therefore for unknown function ®o(¢, ) we have the equation

and unknown function ®;(¢,z) is a harmonic one:
A(I)l =0 (in Ql)

We can now formulate the statement of the initial boundary value problem for un-
known scalar function ®;(¢,z), i = 1,2:

Ad; =0 (in Qy), (55)

82(1)2 2 .
52 = ADy + Fo(t,z) (in Qo), (56)




Small motions and eigenoscillations of a system ,fluid — gas” in a bounded region 13

0P 0Py

0P, 0Py -
o ¢ (onT), /Cdf =0, (58)
r
0%® 0?
plﬁ — P25 (Fr®2) + Bo( = p1Fy — p2PrFy - (onT), (59)

V1(0,2) = VOI(2) = Py 5,0 (), VP2(0,2) = V®Y(x) = Pedy(x),  (60)
gtvq>1(o,x) = V®i(z) = Py 5,91 (v), gtwbg(o,x) = V&l(z) = Pewi(z). (61)

Initial boundary value problem (55) — (61) has the following peculiarity: the second
derivatives with respect to ¢ are located both in equation (56) and in boundary condition
(59).

2.4. The problem on eigenoscillations. Consider eigenoscillations of the hydrosys-
tem ,fluid - gas”, that is, solutions to the homogeneous problem (55) — (61) such that its
change in ¢ by the law exp(iwt) where w is a frequency of eigenoscillations.

If f(t,x) =0, then Fi(t,2) =0, Fy(t,z) = 0. We set

D,(t, x) = exp(iwt)®;(x), i=1,2, (62)

where ®;(z) are so called amplitude functions. From (55) — (61) we have the following
spectral problem for these functions:

A(I)l =0 (in Ql), (63)
—ADy = A 2Dy (in D), N :=w?, (64)
8‘191 . 8(192 .
% —O(On Sl), % —O(On 52), (65)
0Py 09y
n - on ¢ (onT), (66)
BUC = (qu)l - IOQPF@Q) (on F) (67)
/gdr:o, )\/cbngg:O. (68)
r Q2

Here A is a spectral parameter of the problem, ®;(z) and ®9(z) are unknown am-
plitude functions. We see that spectral parameter A enters as in equation (64) as in
boundary condition (67). The operator B, is defined by (51), (52) and has properties
(53), (54) (see Lemma 1). The last relation in (68) is a corollary of equations (64) — (66)
and the first relation (68):

d

/(—A(I)g)dQQ = Ac—2/<1>2d92 = /V@Q -V1dQy — (;2 -1dS =
n
T'o Qo Qo ’

1597
:/mdr:/gdr:o.
on

r r
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Definition 1. We say that the investigated hydrosystem is statically stable in linear
approximation if the operator B, is positive definite (B, > 0), that is,

(BoC, Qo =cliClls, ¢>0, ¢eD(B,). O (69)

If inequality (69) holds then one can introduce the energetic space Hp, of the operator
B, (see, for instance, [25]), i.e., the set of elements { € Lo 1 such that the norm HCH%U <
00.

Lemma 2. The energetic norm

1615, = [0 1Ve¢t + alcflar + § xI¢ ds
r or

is equivalent to the norm

ICI1% = / V¢l dr, / cdr=o,
T I

and this norm is equivalent to standart norm

G2 = / (V¢ + [¢[2)ar

r
of the space H'(T).

Proof. See [9], p.206. O

It follows from Lemma 2 and embedding theorem (H'(I') is compact embedded in
Ly(T")) that the operator B,(>> 0) has a discrete positive spectrum consisting of finite-
multiple eigenvalues { A\ (B,)} 5o with limit point A = +oc0. The system of eigenelements
of the operator B, forms an orthogonal basis in Ly r and Hp, = H! (MNLyr = D(Bi/Q).
Further, the inverse operator B, ! is compact and positive in the space Lor.

Let’s derive preliminary some simple properties of solutions to spectral problem (63)
— (68).

If condition (69) holds then we can find engenvalue A, corresponding to solution
{®1(z), P2(x)}, calculating the values of the functional

2
Zpk/vaQ s,
k=1 G

prc? [0 P a0 4[| B; Pl — )
Qo

It follows from (70) that A = Fj(®;;P2) > 0, that is, frequencies of oscillations

w = £\ are real numbers. This fact is evident physically because the investigated

Fl(@lgq)Q) = (70)

5"

0

hydrosystem is conservative (not dissipative).
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Functional (70) can be find for solutions of spectral problem (63) — (68) by the follow-
ing way. We multiply the both part of equations (63), (64) on p;®; and integrate over ;;
further we use the First Green’s Formula for Laplace operator, boundary conditions (65)
— (66) and summize these identities. Since the operator B, is positive definite (B, > 0)
then it has positive inverse operator B, ! and condition (67) can be rewritten in the

form
¢ =AB,'Pr(p1®1 — pa®3) (onT). (71)
(Remind that fF ®; dI' = 0 and therefore Pr®; = &1, see (26).) Therefore
(B; ' Pr(p1®1 — pa®a), (p1®1 — pa®2))o = (72)

2
= ((B;'Pr(p1®1 — p2®2), Pr(p1®1 — p2®2))o = HB;1/2PF(P1‘1>1 - P2‘I’2)HO-

3. OPERATOR APPROACH TO INVESTIGATION OF THE SPECTRAL PROBLEM.

In this section, for investigation of spectral problem (63) — (68) we use an operator
approach which is based on introduction of auxiliary boundary value problems and its
operators and on transition from (63) — (68) to the spectral problem for some operator
equation in Hilbert space.

3.1. Auxiliary boundary value problems. Consider auxiliary boundary value prob-
lems directly connected with spectral problem (63) — (68).

We introduce preliminary the following necessary in further Hilbert spaces of scalar
functions.

19, The spaces Ly(£2;) with inner product

(u, v)a, :—/u(x)v(:L')in, i1, (73)

Q;
20, The space Ly(I") with inner products
(et i= [ @B (74)
r
3%, The space H!(Q1) with the norm

2
Huuim ::/|Vu2 dQy + /udF , (75)
Q4 T

that is equivalent to the standart norm of Sobolev space W2 ().
49 The space H'(€s) with the norm
2

lul2q, = / Vul? d0s + / wdQs| (76)
Qo

2
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that is equivalent to the standart norm of Sobolev space W3 (£23).
5. The space

H=H, = LQ(F) S} {1F} = L2’F7 (77)

where 1p is the function that is equal to 1 on I'. We consider also the equipment (see
[26], Section 1.1; and also [9])

H, C HyC H_, (78)
where
Hy =W,*(T)NHy, Hy=(H})", (79)

that is H_ is a dual space to Hy (in inner product of the space Hy). Namely, if u € Hy
and v € H_, then linear bounded functional [, (u) has the norm [, (u) := (u,v)o and

o ()] < Jlully - flof] - - (80)

Here (u,v)o is an extention by continuity of the inner product (u,v)o on the case when
weH ,ve H_.

In this paper, we will consider that regions €21 and )9 are lipshitsian domains, in
particularly, its can be piecewise smooth domains with nonzero inner and outer dihedral
angles between smooth parts of 9€);, i = 1, 2.

We will denote by Hflzl C HY(), i = 1,2, the subspaces of spaces with norms (75)
and (76) such that the conditions

/udF—O, /udQQ—O (81)

r Qo

are valid for elements of H'(Q1) and H'(£), respectively. Then, by (75) and (76), we
will have
Jul2g, = / Vul dQi, i=1,2, uecHb, (82)
Qi
that is, squared norms are equal to Dirichlet integral.

Consider, on the base of introduced spaces, the following auxiliary boundary value
problems.

Problem 1. For known function ((z), z € T, find generalized solution ®;(x) to the
problem

Aq)l(ﬂj) =0 (1n Ql), — =0 (OIl Sl), (83)

%:g(onr), /ngzo, /<1>1sz0. O
on
r r
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Definition 2. A function ®;(z) € H, is said to be a weak solution to Problem 1 if the
identity

(¥, @1); 0, = (MY, (o (84)
is valid for any ¥ € Hglh. Here 1 : Hglh — Hj is a trace operator, i.e.,
nWle):=¥. O (85)

It follows from the First Green’s Formula for Laplace operator (and domain §2;) that
a classical solution to Problem 1 is a weak one.

It is known (see, for instance, [9], pp. 105 — 106) that Problem 1 has a unique weak
solution @, € Hslh, ®; =T1(, if and only if

CeH.=(Hy) ={CeW; ): [ ¢ar=op. (36)
I

Here Ty : H-. — Hgl21 is a linear bounded operator with bounded inverse on the image
R(T1) C HY,, of the operator T7.

Problem 2. For known function {(z), z € T', find weak solution ®93(x) to the problem

Adyy =0 (iIl QQ), 85732 =0 (On SZ): (87)
351)22 = —( (onT), /Cdr:(), /<1>22d92=o. 0
n
r Q2

Definition 3. A function ®g(x) € Hy,, is said to be a weak solution to Problem 2 if
the identity

(¥, D22); g, = —(12¥. (o (88)
is valid for any ¥ € Hslzg' Here 75 : Hgl22 — Hy is a trace operator. O
It follows from the First Green’s Formula for Laplace operator ( and domain 23) that
a classical solution to Problem 2 is a weak one.

Problem 2 (as Problem 1) has a unique weak solution ®9y € Hsl22 if and only if
condition (86) is valid (see once more, for instance, [9], pp. 105 — 106). Then

Doy =To¢, To:H_ — Hf,, (89)
T; is a bounded linear operator with bounded inverse on the image R(7T%) C Hglh.

Problem 3. For known function f(z), x € g, find weak solution ®9; () to the problem

. o oD
—A®y; = f (in Qy), 851 =0 (on Ss), ail =0 (onT), (90)

/fdQQZO, /@21 dQe = 0. O
Qo

Qo
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Definition 4. A function ®9; € Hgl22 is said to be a weak solution to Problem 3 if the
identity

(\117(1)21)1,92 = (¥, fla, (91)
holds for an ¥ € Hglb. O

By (u,v)q, we denote here the linear bounded functional for u € Hsl22 and v € (Hglzz)*
We use here the equipment

H, C Laog, C (HY,)*, Lag, = La(Q2) © {1a, }. (92)

It follows from the First Green’s Formula for laplace operator ( and domain 9) that
a classical solution to Problem 3 is a weak one.
Problem 3 has a unique weak solution ®y; € H{, if and only if (see [9], pp. 97)

fla) € (Hg,)" (93)
Then
Doy = Af, ATV (HY,) — HY,, A:HG, — (H)™ (94)
It is known (see, for instance, |9]), that the restriction of A, such that R(A) = Lo q,,
is a selfadjoint positive definite operator with compact inverse operator, i.e., A=! :
Lyg, — Lagq,, Al e Soo(L2,0,). The operator A : D(A) C Lo, — Lag, has a
discrete spectrum {A,(A4)}32, C R4 and

| Qo |
672

2/
Meld) = < > 2 3’“2/3[1 +o(1)], k-—oo, MCR’ (95)

From this it follows that the operator A~! belongs to the class of compact operators
S, for p > 3/2. We have also the properties

D(A) C HY,, D(AY*) =H), A:D(A)C Lyg, — Lag,. (96)

3.2. Transition to the operator problem in some Hilbert space. Consider spec-

tral problem (63) — (68) and suppose that ®(z) is a weak solution to auxiliary Problem
1. Then

Py |o,=T1¢, mMmP1=nTi{=: Ci(. (97)
We represent ®o(z) in the form
Pa(z) = P21 (z) + Poz(w), (98)

where ®99(x) is a weak solution to auxiliary Problem 2 and ®9(z) is a weak solution
to auxiliary Problem 3 for f = A¢™2®5. Then

Doy [,= AT (A2 ®s), Do |0,=ThC, 72Par = 12T = —Cal. (99)

For simplicity we denote
Do |0, =: n(z). (100)
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With account of (97) — (100) we can rewrite equations and boundary conditions (63)
— (68) in the form

An=Xc?(n+To(), neDA), (101)
Bo( = A (—p2Pry2n + Pr(p1Cr + p2C2)), ¢ € D(By). (102)

Introduce the Hilbert space
H(Q) = L27Q2 ® Hy, L27QQ = LQ(QQ) S {192} , (103)

for elements of the form z = (n;¢)? (by symbol (-;-)! we denote the operation of trans-
forming) with the norm

12117, := ||77||%2,Q2 + <l (104)
We will consider that
n € D(A) C Hp, C Laq,, (105)

and introduce new anknown elements

b= c\/paAn, = BY%, (106)

in (101). Then instead of (101) we will have a spectral problem

y=My, yeHQ), (107)
where
A 241 p;/2cf1A—1/2(A1/2T2)BU—1/2 (108)
: *p§/2c_1B;1/2P1"(’7214_1/2)14_1/2 B;—l/QCB;l/Q )
C = Pr(pCr + p2C2)Pr, y = (¢;9). (109)

These transforms show us that an initial spectral problem (63) — (68) is equivalent
to problem (107) — (109) on finding of characteristic numbers A\ and eigenelements y for
the operator matrix A that acting in orthogonal sum of Hilbert spaces (103).

3.3. The solutions properties of spectral problem. Before investigation of solu-
tions properties of problem (107) we will study properties of the operator matrix A from
(108).

It will be shown that all elements of the matrix A are not only bounded but compact
operators also and therefore D(A) = H(Q).

Introduce in the space H_ (see (78), (79)) the norm in one of equivalent forms (see,
for instance, [9], pp. 101-103):

Kl = o / V2 d + po / Vgl dD, (110)
ﬂl QQ

where ®; and P99 are generalized solutions to auxiliary problems 1 and 2.
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Lemma 3. The operator C' = Pr(p1C1+p2C2)Pr : Hy — Hy is a positive and compact
operator. Its extension on H_ O Hy s an isometric operator mapping H_ onto Hy. In
this, D(C~/?) = H,, and after extention D(C~/?) = Hy, R(C~/?) = H_.

Proof. of the lemma see in [9], pp. 193 — 194. O

Lemma 4. The operator AV?T, : Hy — Ly, and —Pp('yzA_l/Q) : Ly, — Hy are

mutual adjoint compact operator.
Proof. We will use the identities (88) and (96). Namely, it follows form (88) that
(U, @22); g, = (Al/Q‘I’,Al/Q@zz)Q = —(727, Qo

2

Since ®9o = T5( then after substitution AY/2¥ = v we receive from this (for ¢ € Hy
we have (72, ()o = (127, ()o) the relation

<141/2T2C’U)Q2 T (C’WA;/QU)O T (PFC’%AA/QU)O -

= (Cy _PF('YQA_I/QU)>O , VYVveH, Vve L27Q2. (111)

Here we used the fact that the operator Pr introduced according to the law (49) is
an orthoprojection, i.e.,

Pr=P2 =P :Ly) — Hy = H = Ly(I') & {1} . (112)

It follows from (111) that (AY/2T3)* = —Pr(v2A~1/2) and both of these operators are

bounded. But the operator v, A~1/2 : Ly, — Ly(I") is compact. Indeed, the operator

A1/2 . Ly g, — Hglb is bounded and the trace operator s : Hglb — Lo(T") (by trace

theorem of Gagliargo, see [27]) is compact. More precisely, 2 is bounded from Hglb onto
the space Hy = W;/Q(F) N Hp and H. is compact embedded into Hy. O

As a corollary of Lemmas 3 and 4 we have the following assertion.
Lemma 5. Matriz operator A from (108) is a compact operator acting in H(S2).

Proof. Remind that we used inequality (69) and therefore the operator B, has a bound-
ed inverse operator By, v 2, acting in Hy. Therefore all entries in (108) are compact oper-
ators since A~ A=Y/2 AY2T,, —Pp(’yg)Afl/2 and C are compact operators, and Bg_l/2

is bounded. ]
Theorem 1. Matrixz operator A is positive selfadjoint compact operator acting in H(S2).

Proof. By Lemmas 3 — 4, it is sufficient to check the property of positiveness of the
operator A.

For an arbitrary element y = (1; )" € H(Q) we consider he quadratic form of the
operator A. We have

(Aya y)H(Q) = cil(A71¢7 w)QQ + p;/Qcil(TQB;1/2(p7 w)ﬂg_
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—py 2 U BV P AN, )0 + (CB; Y2, By Y20). (113)

Taking into account substitutions (106) we have from (113)

(Ay, Y)r) = p2(n, An)a, + p2(12€, An)a, — p2(Pry2n, (o + (C¢, Qo (114)

Here

(C¢,¢)o = p1(C1¢, Q)o + p2(C2(, Qo = p1(11T1¢, ¢)o — p2(1212¢, ¢ )o- (115)

From this, using identities (84), (88) and denotations (97), (99), we have

(1T1¢, Qo = (Mm®P1,{)o = (1, P1)1,0, = / IV, dS, (116)
951
—(712T2¢; C)o =/|V‘P22!2 dQs. (117)
Qo

Analogous considerations give us equalities

(n, An)q, = (A0, AY2n)q, = |02 )] o, = / VDo [ dQs, (118)
Qo

(TaoC, An)a, = (AY?Ta¢, AY?n)qg, = (Pag, Ba1)1.0, = /V‘I’n VP9 dQs,  (119)
Qo

—(Pry2n, Qo = —(72m, Qo = (P21, Pa2)1,0, = /V‘I’m - Vg dQQs. (120)
Q2
It follows from (114) — (120) that

(Ay, Y)n) = 1 / IVE1[* dQ1 + po / IV®s|? d2s >0, (121)
Q1 QQ

where @3 = ®91 + @92 Consequently, the operator A = A* > 0. If (Ay, y)x(q) = 0, then
from (121) we have ®1(z) = ¢; = 0, Po(x) = c2 = 0, and therefore the operator A is
positive. U

It follows from above that spectral problem (107) is equivalent to the eigenvalue
problem for compact positive operator A, i.e.,

Ay=py, p=X\" yeHQ). (122)

From this and by Hilbert - Schmidt theorem we receive the final assertion on solutions
properties of the initial spectral problem (63) — (68).
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Theorem 2. 1°.  Spectral problem (63) — (68) has a discrete spectrum { A}, consist-
ing of finite - multiple eigenvalues A, located on positive semiaxis Ry and having limit
point A = 400.

20, Eigenelements y, = ((®21)i; Gi)', k= 1,2, ..., form an orthogonal basis in Hilbert
space H(Y) = Lo g, ® Hp.

30, Eigenvalues \i can be find as consecutive minima of functional Fy(®q; ®2) from
(70) or as consecutive minima of the functional

25y / Ay dDs + (¢, ),
Qo

pl/\V(Pl\Q d91+p2/yvq>2y? 2
Ql QZ

Fy(®q;P2) = (123)

see (53). Both of these functionals must be considered on class of functions ®1(x) and
Oy(x) for which the conditions

. o L
AD; =0 (inQy), 671:0 (on S1), 872:0 (on Ss), (124)
¢ 9% _ 9% oy /CdF—O, /CI>1dF—0, /<I>2d92—0,
on on
r r Qo

are fulfilled.
4%, For eigenfunctions of problem (63) — (68) the following equalities of orthogonal-
ities are valid:

2
Ay vy = 3 o [ Vs Ty S = 3, (125)
Qin

m=1

[ 0o 0Py
Yk Yi)H(o) = CZPz/A%k - ADy; dQy + (8 L 3 Y !r) = Mlrj,  (126)
3, n n B,

(B;lpp(pl(blk — pQ(I)Qk), Pp(pl(l)lj — P2@2j))0+/)2072 / @2]{-@72de2 = A;lékj. (127)
Qo

Proof. 1°. The first assertion is evident since (122) is a spectral problem for compact
positive operator A and = A7,

20 The second one is also the corollary of Hilbert - Schmidt theorem.

3%, Formulas (125) can be derived analogously to transforms (113) — (121). Then
(126) follows from (122) and (125). Formulas (127) will be proved later (see Theorem
6). O
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4. VARIATION PRINCIPLES FOR EIGENVALUES.

In the section, variation principles for eigenvalues of problem (63) — (68) are justified
on the base of variation relations (70) and (123). The comparison of these principles are
carried out in applications.

4.1. The first variation principle. Consider once more spectral problem (63) — (68).
For simplicity we put all physical constants (its are positive) to be equal to 1:

c=1, pp=1 p2=1. (128)

Then we will have spectral problem

Agpl =0 (in Ql), —AQOQ = )\SOQ (in Qg), (129)

dp1 _ Opo i ,

=== — T = it =1,2), 1
¢ . o (onT), o 0 (on S;,1 ) (130)
BOC = )\Pp(ng - QDQ) (OII F), /Cdl“ = O, )\/(,02 dQQ (131)
r Q2
For this problem we receive (instead of (101)) the system of equations

An = An+T12C), Bo(=A—Pryan+ CC), (132)
n€D(A), ¢eD(Bs), (133)

for the same denotations of operators. By analogy with Theorem 2 we prove that prob-
lem (132), (133) has a discrete spectrum {A;}7°, consisting of finite multiple positive
eigenvalues A\ with limit point A = +o0.

Theorem 3. The eigenvalues Ny, to problem (129) — (131) are consecutive minima of
the variation relation

2 / Verl? dn
Q

F(p1;92) = - : (134)
/’@2! dQs +/ B2 Pp(p1 — ¢2)| dT
Qo r
This relation must be considered on functions @i € H})k with the properties
Ap; =0 (in Qy), % =0 (onSh), % =0 (on S2), (135)
dp1  Op2 / /
=== T dl' =0 dQy = 0. 136
o~ on o ln) e [ p2dii (136)
r Q2
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Proof. 1°. We use the substitution

A2y =77 e D(AY?) (137)
in problem (132), (133). Then we have
AV = NATYV2G +T9C),  BoC = M—Pry A~V + C0). (138)
If 7 € Lyq,, then
ATV2H 4 Ty¢ e D(AY?) (139)

because, by Lemma 4, the operator AY2T; is compact. Therefore we can apply the
operator A'/2 to the both parts of equation (138). It gives us the system of equations

LS 1

Q" = —PrypA~Y2 Q=AY’Ty, C = Pp(Cy+Cy)Pr,

or
Ay =Ty, y € D(A) ®D(B,), (141)
A = diag(4; By) > 0, I Q
~ J=| ", > 0. 142
yi= @), Q )
20, Problem (141) is equivalent to problem
T la=xA"1z2, 2= Ty, (143)

and (143), in turn, is equivalent to problem
w=ATVPAT TV w, w=7g 2z (144)

Since this problem, as problem (132), (133), has a discrete positive spectrum then
bounded and selfadjoint operator J1/2A4~171/2 is a compact positive operator. Therefore

eigenvalues A\ of this problem are consecutive minima of variation relation

(w.v) Gy @ .
(A-12712w, A-Y2720) — (A712,2)  (A71z,2)

3%, We calculate numerator and denominator in (145) coming back to initial variables

1 and @2. We have

(y,2) = (77) - ( 7+ Q0 ) — 172, + (7. @0y + (6. Q7o + (¢, CC)o =

() \@n+C¢
2
- HAWW‘ e ¥ 2Re(A'n, AYPTo()a, + (Pr(nTi — 12T2)¢ Oo- (146)
2
Since
2
vl = [190f a6, DY) = Hby 0= oo, Tog = o TiC =1, (147

Qo
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then the right hand side in (146) is equal to

/’V§021| dQQ+2Re/V<p21 V(,OQQ dQ2+/’V(p22| dQQ-}-/‘V(,Dﬂ d); =
Qs Qs o
2
= / IVeor|* dy + / V(021 + p22)[* dQp = Z/ Vior|? d€. (148)
Q Q k=1q,
Calculating the denominator in (145) we have

1,y (AT 0 [T+ T+QC | _
“ Z’Z)‘< 0 B;1> (Q*ﬁwc)'(@ﬁwc)‘

1/~ ~
_ (3?1 (77 + Q) )( i+ Q ) 4o+

@ii+c¢)) \@ii+cc
2 2
+ HB;1/2(Q*77+ C'C)HO = HBEI/Q(*PF’YW + Pr (T — 72T2)C)H0 +
2
0+ Tocli3, = llea + poalld, + || B2 Pr(ner — 12002 = 0021) | =

2
= lleallp, + | B 2Pr(ner = 2e2) | =
2
/ |l A2 + / ‘B Y2Pr(yi1 — 72@2)‘ dr’. (149)
Qo
Now the variation principle (134) follows from (145), (148) and (149). Relations (135) —
(136) take place because the functions ¢; and @2 must be solutions to auxiliary Problems

1 and 2 (see Subsection 3.1) for the element ¢ € H_ (see formulas (83) — (88).) O

4.2. The second variation principle. We return to spectral problem (129) — (131).
Our goal is to prove the second variation principle for eigenvalues A of this problem. We
check preliminary that numbers A are coinside with values of the functional

/ Apaf? dSta + G,

F3 (15 02) := E (150)

Z/\vm o

on solutions ¢1, 2 to problem (129) — (131) with taking into account relations (135),
(136). Here quadratic functional ||¢ Hng is defined by (53).

To this end, we use the following relations that are valid for solutions to problem
(129) - (131):

0
/A% p1dQ = /|V801| ddy — /tp1 @1dr=/|v¢1|2d91—/4¢1dr;
O T
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0
/A902 Ao dfdy = )\/S02A<P2 dQy =\ /V802 dQs —/902 ;2 ar| =
r

Q2 Q2

=\ /|v902|2 d92/¢2¢dr
(92 I

If we multiply he first relation by A and subtract the second one we have

AZ/ywk\ Ay, = /mmy dQQ—i-)\/((pl ©2)Cdl =
r

Qo
=/\Aso2|2d92+x/f>p<sol—¢2><dr=/|Aso2|2 i+ ¢ . (151)
T

From this the variation relation (150) follows.

Theorem 4. Eigenvalues A to problem (129) - (131) are consecutive minima of variation
relation (150) considered on functions ¢y, € Hfllk such that conditions (135), (136) are
valid and, additionally, conditions

0 8
Apy € La(2), (= 501 @2

‘I‘G H=Hy= 1Ly ) (152)
are valid also.

Proof. With account of (128) problem (107) has the form

y=Moy, y=(;p) €H), (153)
e A~ AT12QB; Y = A = Apay, 54
0= B;1/2Q*A*1/2 B;l/QCB(;l/Q o= Bl/QC (154)

Here, as in problem (107), the matrix operator Ay is compact and positive (see Lemma 5
and Theorem 1). Therefore eigenvalues A are consecutive minima of the variation relation

() _ Ivllg, + liello
(Aoy, y) (Aoy, y)

Since, by definition (see Problem 3), Apa = —Apa1, w21 € D(A), then the numerator

(155)

in (155) is equal to

2
[1aeul o+ [[|Br ar= [ 180 a+ 16, (156)

Qo r Qg

because 21 = 2 — Y22, Apaz = 0 (see Problem 2).
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As for the denominator in (155) then the quadratic form (Agy,y) can be derived by
the same way as it was done in proof of Theorem 1. Taking into account (128) and using
formula (121), we have

2
(Aag) =Y [ 19? dou. (157)

=

and from (155) — (157) the variation principle (150) follows. O

Remark 1. Conditions (152) in Theorem 4 (i.e., in the second variation principle, see
(150)) are sufficiently restrictive and its are connected with smoothness of functions
¢i(z) in domains ; with nonsmooth boundaries 9€2;, i = 1,2. In the first variation
principle (see Theorem 3) these conditions are absent. [l

4.3. Comparison of the variation principles. Note at first that numbers py 1= )\,;1
in problem (129) — (131) are consecutive maxima of the variation relation (see (134))

2
/|(p2|2 dQQ + / ‘Bg_l/QPF((pl — (pg) dar
Q r
F3(p1;2) = = ; : (158)
> [ 19 aou

This fact follows as from Theorem 3 as from equation (122).

Now we will carry out the comparison of the variation principles on the base of
functionals F(¢1;@2) from (134), F9(p1;p2) from (150) and F9(p1; p2) from (158) if
we will use the Ritz method of numerical calculations of eigenvalues and eigenfunctions
for problem (129) — (131).

As it follows from Theorem 3, one can find the eigenvalues A to problem (129) — (131)
considering the variation problem on minimum for the functional

2
I(p1;92) == Z/ Vior|* dSy, (159)

k=1,
under the additional condition
2
K(p1: 09) = / oo dS2 + / ‘Bgl/QPF(gpl _ @2)) dT = const > 0. (160)
Qs T

Instead of (159), (160) one can consider the problem on unconditional extremum for
the functional

L(p15902) := I(p1502) — AK (15 02) (161)

with taking into account connections (135), (136).
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It follows from Theorem 4 that one can find the eigenvalues A solving the problem on
minimum for the functional

Mg 2) = / Al d + 1¢I5, (162)
Qo

under the additional condition
I(p1;p2) = const > 0, (163)

i.e., the problem on unconditional extremum for the functional

M, (p1; 02) == M(p1;p02) — M (p1;02). (164)

Here one must carry out variations in the class of functions such that conditions (135),
(136), (152) must be valid.

Both of these approaches for functionals (161) and (164) on the base of Ritz method
have the following restrictive fact: coordinate (basis) functions that approximate the
solution ¢1(z) must be harmonic functions in the region ©; and Newmann condition
must be valid on the surface S; for them. We can not take into account this restriction
if we will use the variation principle on the base of functional F{(¢1;¢2) from (158).

Theorem 5. In problem (129) - (131) one can find numbers yu = A\~! by Ritz method
considering the problem on maximum of the functional K (¢1;p2) under additional con-
dition I(p1;¢2) = const > 0 or in the problem on unconditional extremum for the
Sfunctional

Ki(p1:92) = K(p1502) — pl(p1592). (165)
In this, it is sufficient to carry out the variation in (164) in class of functions p; € Hflzi:
i=1,2.
Here conditions (135), (136) for functional are natural, i.e., its are valid automatically
for solutions to problem (129) — (131) with A = p~!.

Proof. Let dp;(x) be arbitrary functions from Hglzi, i =1,2. Then

/(5(,01 dl' = 0, /5(,02 dQQ = 0. (166)
T Qo
Calculating variation of the functional K, on these functions and equating it to zero we
have
1 _
5 SK (1, p2; 01, 0p2) = /5025302 dQs + /Bo— "Pr(¢1 — 2)Pr(5p1 — 8ip2) dT'—

Qo r

2
—MZ/V%'W% S, = /9025@2 d92+/BglPr(901 — p2)dp1 dl'—
k=1g Qs T
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0
—/B "Pr(p1 — )0 dl — /A9015s01 szJr/ 5015@1 dsy | —
T 5

. 1
PV ) on
T So

Pl 500 dl — / Apadips dQ + / 8(;025@2ng— aa Spodl | =

0
/(902 + HAp2)dip2 dS2s + N/A8015901 dQy — /5215@1 dS1—

Qo S1

0 01
—u/ g2 dpo dSs + / B;lpp(gol —2) — p—— | dp1 dl'—
on on
So N

a
—/ (B;le(<p1 — 9) — T ) Spodl’ = 0. (167)
I

From this one can prove sequentially the following facts.

19, If 52 = 0 in Qo and dy; is a compactly supported (finitary) function in €
then (with account of density property of finitary functions in Lo(£21)) we have that the
equation Ag; = 0 (in Q) is valid for ¢.

20, Putting on §py = 0, 1 = 0 (on I') and using the fact that dp; is arbitrary on

0
S1, we have the boundary condition % =0 (on Sy).
n

39, Putting on dps = 0 and using the fact, that d¢; is an arbitrary function on T’

with / dp1 dl' = 0, we receive the condition
r

91
N@n

(More concrete, here the right hand side is equal to constant and it is equal to zero

B;lpp(gpl —2) — =0 (onT).

because
3901

Al =0)

/BJIPF(% — p2)dl’ =0,
r r
49, Let now d¢9 be finitary. Then from (167) (with account of received relations) we
calculate that

w2 + pAps =0 (in Q3).
0 _ Opa
59, If 62 =0 (on T') then we have = 0 (on S9).
n
69. At last, if d¢9 is an arbitrary function on I' then we have the condition

pI22 B Pe(pr — ) = 0 (on ),
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(Indeed, since /5(,02 dy = 0, then for the first time we have

Qo
,ua;:j — B Pr(p1 — 2) = const.
But 5
—/AcpngQ:)\/cpngQ:...: %df:@,
Q2 Qo r

and therefore above constant is equal to zero.)
Thus, solutions ¢ and 9, corresponding to stationar values of functional (164) for
p = A71, are solutions to spectral problem (129) — (131). O

5. ON ORTHOGONAL BASIS PROPERTY OF THE EIGENFUNCTIONS.

In this section, properties of orthogonal basis for the system of eigenfunctions to
problem (63) — (68) or (129) — (131) are studied. We define more exactly Hilbert spaces
where these eigenfunctions form an orthogonal basis.

5.1. Some additional assertions. In the space Hgl21 (see Subsection 3.1) we introduce
the subspace H }1L s, (€21) of harmonic functions that are formed by weak solutions to the

auxiliary Problem 1 for all ¢ € (Hllp)*:

Hy s, ()= {e e Hh, s o =Ti¢, V(e (%)} (168)
It follows from (]9], p. 106) that subspace
Hyp():={¢p e Hy : =0 onT} (169)

is an orthogonal complement to H é 5 (€1) in the space Hglh.
Introduce also the space

HU(Q) = {p = (p1;02) 1 p2 € Hp,, 1€ Hy g (),

Opa | Op1 | dp |
on T o T ¢ on |5,=0 (170)

with the norm

Il

2
Ta= Z/ Veor|* dy; (171)
k=1g,

this space is connected naturally with problem (129) — (131).

Lemma 6. Any element ¢ = (p1;02) € H(Q) has a representation

pi=Ti(, w=T(+A7'f, ce(H?), fe(mb),  (m2)
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where T1, Ty and A are operators of auziliary Problems 1 — 3 (see Subsection 3.1). The
operator

AL T * *

determines one-to-one correspondence between elements (f; )t and (p2; p1)t, it is bound-
ed and has bounded inverse.

Proof. 1. Let f € (H}h)*, ¢ e (HI{/2> . Then, according to solutions properties of

auxiliary Problem 1, we have p; :=T1¢( € H }1L s, (€21). By Problem 2, we have analogously
w0 =15 € H,% Sy (Q9) C HSI)Q. Introduce also, by Problem 3, an element (9 := A™Lf €
Hslb. Then @9 := a1 + o2 € Hglz2 and therefore

dp2 _ 9p1

SO = (S02;S01)t € Hfllg X H%,,Sl(Ql)7 an - an = C (On F)’

ie., p € HYQ).

Hence, representations (172) and (173) are proved. Remark now that in (173) the
operator 17 acts boundedly from <H1£/2) " onto H%,Sl (€1), the operator T3 acts bound-
edly from (H%/Z)* onto H}{’S2(QQ) C H{,, and the operator A~! acts boundedly
from (Hgb)* onto Hgb. Therefore the operator matrix J from (173) is bounded from
(Hh,)" % (H?) " into 1! (@),

20 Conversely, let

91 _ 9¢

on  On nT).

P2 € Hglb, ©p1 € Hé,Sl(Ql)7
8 *
Then ¢ := T 'y = % Ire (H%/Q) (see (86)). Introduce pap = To¢ = Ty gy €
n
H&,SQ(QQ) C Hg,. Then
P21 1= 2 — 20 = o — Ty o1 € HYy = R(A™Y) = D(A),
and therefore

fi=Apa — 22) = Aps — ATT 'y € (HY,)" .

Finally, we have

f . A —AT2T1_1 ©2 1 \* 1/2 *
(C (o o )e (HS,)" x (HF ) : (174)
where the operator

- A —ADT! . o\
g1 = (0 T_211 ) : Hy, x Hjy g (1) — (Hp,)" x (H%/ ) (175)
1

is bounded because here all entries are bounded operators. O
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5.2. Orthogonal basis properties for the system of eigenfunctions. On the base
of above proved facts, we will prove here orthogonal basis property for eigenfunctions of
problem (129) — (131) and initial spectral problem (63) — (68).

Theorem 6. Eigenfunctions

{ertizy == {pa; wlk}/;.;

of problem (129) — (131) form an orthogonal basis in the space H*(Q) (see (170)). Re-
spectively, eigenfunctions @y, := (Poy; P1i), k =1,2,..., of problem (63) — (68) form an
orthogonal basis in the space H1(82; p) with the norm

2
10120, =3 pm / V2 A (176)
m=1 O

In this, for eigenfunctions {¢r}32, of problem (129) — (131) the following formulas

\

2
Z / Vomk - Vomj dSy, = o,
m*lﬂm

0 014
/A<P2k'A<P2de2+( LT (pﬁj !r) = MOk (177)
B,
Qo

on 0

/90% o dSdg + / (B, Pr(p1k — o)) (915 — 25) dT = A 10y,
QQ T V4

are valid, and for eigenelements {®y 5o, of problem (63) — (68) formulas orthogonality
(125) - (127) hold.

Proof. It is evident that we can prove only the first assertion of the theorem, i.e., prop-
erties for functions {y}32 ;. Proof of corresponding properties for functions {®;}2° is

the same.
As it follows from proof of Theorem 4, eigenelements
t
Y = <—A<p2k; BL/? <6§;€> ) of problem (153) — (154) form an orthogonal
r
basis in the space H(Q2) = Lo g, ¢ Ho. By (153) and (157),
2
(Ao = 3 o [ Tt Vit dSln =0 (k £1), (178)
m=1 O

and if (Aoyk,y;) = Ok, then the system of eigenelements {(pak; v1k)} ey to problem
(129) — (131) is orthonormal in the space H!(£2). We will prove now that this system
form an orthogonal basis in H!(Q2).
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Since the operators J and J !, by Lemma 6, are bounded, it is sufficient to check
that the set of elements

t
r

is complete in the space (Hglb)* X (Hll/2>*. Indeed, in the case the system of elements
{(par; o1k) 1221 will be complete in H!(2) and orthogonal, i.e., it will be an orthogonal
basis in H!(9).

Let ¢ = (¢3;¢%)! be an arbitrary element from H!($2). Then, by Lemma 6, the
element

0 b . .
Y0 = < Agb; < ale> ) =770 e (Hh,)" x (H?) . (180)
r
Since the space Lg g, and Ly = Hp have equipments, i.e.,
*
Hp, C Lzo, € (Hp,)" . H* CLyr C (Hﬁ/z) : (181)
then .

(HS,)™ x (H%ﬂ) > Lo, @& Ho = H(Q) (182)

and H(Q) is dense in (Hglb)* X (HIE/ 2) . Therefore for any € > 0 there exists an element

¢ € H(Q) such that

deo - {EOH 13y ( 1/2)* <e/2. (183)

Further, for any element u € H(Q2) the inequality

Il g )7« (e < Pl (184)

holds since the embedding operator from H(£2) into (Hglzz)* X (H%/ 2>* is bounded (and
even compact). Since elements {y;}72, from (179) form an orthogonal basis in H(£2)

and therefore form a complete system, then one can take a number N = N(¢) € N and
coefficients ¢k, k = 1,..., N(g), such that

N(e)

€
E CkYk <o (185)
— 2c

H(Q)
where ¢ > 0 is a constant from (184). Then, by (184) and (185), we have

N(e) - N(e)
= > kb = || @° =) + Z CkYk <
S (0 R RN (#8,) % (m%)"
N(e)
- Z CkYk <3z + & Z CkYk <g,
k=1

(mdy) < (H72)” ()
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i.e., the system of elements from (179) is complete in (H}lg)* X (HI{/2>*. O

On the base of above proved assertions, we will prove corresponding basis properties
of and completeness for the system of eigenfunctions to spectral problem generated by
initial boundary value problem (8) — (15).

We will consider solutions to homogeneous problem (8) — (14) in the form

iwt

Qﬂl(t,.’ﬂ) = 1171(33)6 ) pl(th) = pi(x)eiwta 1= 17 2’ (186)

where w is a frequency of oscillations and w;(x), p;(z) are so called amplitude functions
(modes of oscillations). We have the following spectral problem for these functions:

1
)\1171 =5 FVPl, diV’lIfl =0 (in Ql), ’Ll_fl =20 (on 51), A= wQ, (187)
1
1
Ay = ;va? D2 + pQCQdiV’LD'Q =0 (in Qg), Uy -m=0 (on SQ), (188)
2
W -nm=ws-M=:¢, Pr(p1—p2)=DB,((onl). (189)

This problem is equivalent to problem (63) — (68) since
wi(z) = VO&;(x), i =1,2.
On the base of orthogonal decompositions (23) and (34) introduce subspace
G(Q) = G() ® Ghs, () == {w = (W W) : Wy = Vs € G(Da),

- 0P
W1 = VO € Gy, (1), W -fi=wy-1=:((onT), 87712 =0 (on Sz)} (190)

in the space L(Q) & La(Qs) with scalar product

2
(@, 7) := Zpk/wk - Ty dYy,. (191)

It is evident that solutions @ = (ws;w;) to problem (187) — (189) must belong to the
space G(€).

Theorem 7. Eigenfunctions Wy = (Wag; W) = (VPoi; VP1i), k= 1,2,..., to problem
(187) — (189), corresponding to nonzero eigenvalues A, form an orthogonal basis in the

subspace G(€2).

Proof. By Theorem 6, eigenfunctions {(®ax; ®1)}32, of problem (63) — (68) form an
orthogonal basis in the space H!(Q; p) with squared norm (176). It follows from (190)
and (191) that there exists isometric isomorphism between elements of spaces H!(£2; p)

and G(9).
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Indeed, any element (V®y; V@) € G(1) is defined uniquely by the element (®y; &) €
H(€% p). Conversely, an element (®o; ®1) is uniquely defined by (V®q; V&) € G(Q)
because we must take into account conditions (26) and (35):

/@1 dr =0, /q>2 Qs = 0. (192)
T Qo
Finally, for arbitrary (wo; i), (vh;¢h) from é(Q), w; = VO;, U, = V¥, i = 1,2, we
have
((@a; @), (02; 1)) gy = (VP25 V1), (VI V1)) 5 =

2 2
= Zpk/u_fk . Uk ko = Zpk / V‘I)k . V\I/k ko == ((@2; ‘I)l), (\112; qll))?‘h(ﬂ,p) . (193)

It proves the theorem. O

5.3. Some limit cases. Comming back to variation principles for eigenvalues A\ = w?

in problem (63) — (68) (see theorems 3 — 5) we remark once more that these eigenvalues
can be find as consecutive minima of the functional

2
Zpk/yvﬂbk\? Ay,

Fl(q)l; @2) = 5 2 (194)
P202/|‘1)2| dQds + ‘BEI/QPF(Pl(Pl —P2‘1>2)H0
Qo
or the functional
O 2
CZpQ/yA@QyQ dQsy + H<1>
on ) B,
Q
Fo(®1;®9) = 2 (195)

2
ZPk/!V‘I’k\Q dQy,
=g

on corresponding classes of functions ®; and ®,, see conditions (135), (136) for ¢; = ®;,
1=1,2.
Consider limit problems in variation relations (194), (195). These problems correspond
to limit values of physical parameters in studied hydrodynamical system ,fluid — gas”.
19, If the density of a gas tends to zero, pp — 0, then in limit we have the well-
known problem on small oscillations of a capillary ideal fluid in an open vessel (see, for
instance, 9], p. 207). Then

p1/|V<I>1|2 d
Q1

Py = Fi(9) = 7
B2

(196)
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1(52).1,

,01/|V‘1’1 dQl

2

Fy = F(®,) =

(197)

20 If the velocity of a sound tends to 1nﬁn1ty, ¢ — 00, then in limit we have a
problem on small oscillation of two capillary ideal fluids with densities p; and p2 (see
[9], p. 212). Then we can put ¢ = 0 into functional (194):

2
Zﬂk/\v@k|2 Sy,

Fi(®1;P9) |2no= b 5. (198)
HB;VQPF(M(I)I - p2¢’2)”0

But in functional (195) this procedure is not correct. Here we must do the following:

2

we divide (195) on ¢? and calculate the limit when ¢=2 — 0. We will have the functional

pg/‘A@gF dQQ
Q2

5 .
Zpk/|v‘pk!2 sy,
P

It can be shown (see below) that functional (199) defines an asymptotic behavior of

lim ¢ 2F2((I>1, Oy) =

c—2—0

(199)

eigenvalues Ac—2 corresponding to the so-called acoustic waves in studied hydrosystem.

3%, Finally, if mesQ; — 0 (and therefore mesT' — 0) then in a limit case a
classical problem on oscillations of a barotropic gas in a region 2o = {2 arizes. Here we
have variation relations

02/ | Vo |* ds 02/ | A®, |? dy

/ | @5 |* dfy / | V®y |2 dQy
QQ QQ

corresponding to squared frequences of acoustic oscillations in 2o = 2.

; (200)

5.4. On surface and acoustic waves in the system ,fluid — gas”. Here we will
briefly consider some simple heuristic assertions connected with existence in the system
Sfuid — gas” of wave motions of two tipes.

Remark preliminary that if ¢ = oo, i.e., the second fluid is incompressible, then we
have in the system only surface waves. These waves are located in the vicinity of the
equilibrium surface I' (skin effect). Squared frequences of oscillations of these waves are
consecutive minima of functional (198). From the other hand, the property of compress-
ibility of the second fluid, as it is evident from physical considerations, must generate
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acoustic waves in the region 2o fulfilled by a gas. In this, squared frequencies of oscilla-
tions of these types of waves are positive. They form a discrete spectrum with limit point
at +00, i.e., both branches of eigenvalues are located on a positive semiaxis. Therefore
it is very difficult to separate eigenvalues for these two types of waves. Here we must
take into account not only eigenvalues but eigenfunctions of studied problem also.

Come back to problem (101), (102) and rewrite it in the form taking into account
Lemma 4. We have

prAn = e+ pAT2QC), Byl = NpQAY?n + CO), (201)

Q= —PrypA7V2 Q"= AYVTy, ci=c?2>0. (202)

Consider solutions to problem (201), (202) as functions of a parameter ¢ = ¢~ 2 > 0.

Remark that eigenvalues and eigenfunctions of the problem are continuous functions in
€ when e changes continuously on positive interval.

It is easily seen that solutions to problem (201), (202) are separated on two classes

when ¢ — +0. For the first class we have A = A(¢) = O(1) (¢ — +0), and for the

second one A\e =: u = p(e) = O(1) (¢ — +0). For the first class we have in the limit
A= X, n =10, ( = (p, and for these elements relations

p2Ang =0,  BoCo = Ao(p2QA 1o + Clo), (203)
are valid. Since A > 0, B, > 0, then it follows from (203) that ny = 0, B,(y = AoCp.
Then nontrivial solutions to system (203) have the form

mo ="nok =0, Xo=Xok, Bolok =ACC0, k=12,..., (204)

where A\ and (o are solutions to spectral problem (204). It corresponds to variation
relation (198) and surface waves in the system of two capillary incompressible fluids.
The problem has a discrete spectrum { Ao }22; with limit point 4o0.

Thus, in problem (201), (202) there exist solutions (surface waves) of the form

A= () = Aok +o(1), 1 =n(e) = o(1), ¢ = C(e) = Cor +0(1) (£ = ¢ 2 —0). (205)

For the second class of solutions we consider the limit case pu(e) =
Ae)e — pp (e — +0), and from (201) we have the system of equations

paAn = po(pano + paA~2Q%Co), 0= po(p2QA™Y2ng + C (o). (206)

It can be proved that this system (for up # 0) has a discrete positive spectrum pg = pog,
k=1,2,..., with limit point © = +00, and numbers ugr can be finded as consecutive
minima of variation relation (199). A physical sence of solutions of this form is the
following: they are acoustic waves that are located not only in a gas (region ), across
the surface I' a fluid in a region 2; also envolves in process of joint oscillations.

Thus, in the second case solutions to problem (201) have the form

Ne) = ur(e)e™ = e por +0(1)), () = ok + o(1), (207)
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C(e) =Cok+0(1), e6— 40, k=1,2,...,
where po are eigenvalues of variation relation (199) and 7o and (p are correspondent
eigenelements (199) or system (206).
Comparing (205) and (207) we finally conclude that solutions to problem on oscil-

2 — o) separated on two

lations of a system ,fluid — gas” are asymptotically (as ¢
classes of oscillations (surface and acoustic waves) for which frequencies have different

asymptotic behavior.

6. ON SOLVABILITY OF THE INITIAL BOUNDARY VALUE PROBLEM.

Here we consider problems on unique solvability of the initial boundary value scalar
problem (55) — (61) and the initial vector problem (8) — (15). The theorem on existence of
strong solution to abstract hyperbolic equation in Hilbert space is the base for receiving
these results.

6.1. On transition to hyperbolic equation in Hilbert space. Come back to scalar
initial boundary value problem (55) — (61) for displacement potentials ®;(¢, x), i = 1, 2.
Spectral problem (63) — (68) correspond to it if solutions of homogeneous initial boundary
value problem (55) — (61) have the form ®;(t, z) = e™!®;(x) (see (62)). Further, we used
an operator approach for investigation of problem (63) — (68), and this approach led us
to study of equations system (101) — (102).

We can use the same transforms in the initial boundary value problem (55) — (61)
repeating the same way and considering that unknown functions are functions in variable
t with values in corresponding Hilbert spaces. Then instead of (101) — (102) we come to
Cauchy problem

2
773 (P20 + paToC) + poc®An = pa (1), (208)
2
p7e] (=p2Pryan + CC) + BoC = (p1F1 — p2 P Fy) |1 (1), (209)
n0) =71, 7 0)=n" ¢0)=¢, 0=, (210)
where we used the same notations and
VFE,=Pocf, VFi=Pusf, f=Fftz), (211)

see (40), (33).
Further, we carry out the following formal transforms in problem (208) — (211). We
use the substitutions

n=A"Y%, ¢=C"Y%, C=Pr(pCy+ p2Ca)Pr > 0. (212)

Then, acting from the left by the operators A'/? in (208) and C~1/2 in (209) (these steps
will be justified), we will have

d2 _ 1 /27 _
s (o + Q7 C7) 4 P = ;A V(1) (213)
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d? L _ 127 e
5 (PO Qi+ C) + CTV2B, 07V = OV iy — o PeFy) [ (1), (214)

00) =7’ = A0, i(0)= A2, (0)=C"0, )=C¢ (215)
Remember that, by Lemma 4, the operators
Q = —PF(’yFAil/z) : L27Q2 — Hy = L271‘*, Q* = A1/2T2 :Hy — L2792 (216)
are mutual adjoint and compact.

Lemma 7. The operators

V=C"2Q  Lyq, — Hy, V*':=QC™Y?:Hy— Lyg, (217)
are mutual adjoint and bounded.
Proof. By Lemma 3, the operator C~1/2 (after extention on Hy) act boundedly from
Hy onto H_ = (H%/2)*; the operator T, is bounded from H_ into Hé2 (see Problem 2
and (89)); the operator A2 is bounded from H{, = D(AY?) onto Ly q,. Therefore the

operator Q*C~1/2 = AY21T,C~1/2 is bounded from Hy into Ls q,. Since V is adjoint to
V* then the operator C~/2Q is bounded also. O

Rewrite problem (213) — (215) in a vector-matrix form, i.e.,

B+ =), 0= )= 218)

F(t) == (02A1/2F2(t);0_1/2(01F1 — p2PrFs) |r (t))t7 (219)

y= @ EH() = Log, & Ho. 3 = @f ) Y= (5’71) S @)
B:= (;)jé szV*> A= (cQ;SQA 0—1/23(10‘1/2 ) , (221)

It follows from properties of the operators A, C~! and B, that the operator A, defined
on the set

D(A) := D(A) & D(C~/?B,C~/?), D(C~Y?B,C~Y?) = R(CY2B;'C'/?), (222)
is an unbounded selfadjoint positive definite operator acting in the space H(2).

Lemma 8. The operator B is a bounded selfadjoint and positive definite operator acting

in H(Q).
Proof. It follows from Lemma 7 that B is selfadjoint and bounded. Check that B is
positive definite.

For any y € H(£2) we have

(By, y)no) = (p277+ p2V*C, ﬁ) o + (PzVﬁ+ ¢, Z)O
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= ol +2p2Re (V*C.77) + 11 C I
Coming back to variables n and ¢ by formulas (212), using relation (110), i.e.,

|G I = [ 1901 P ot po [ | V2 P a2 =
Ql QZ

=p1 | ToC [0, +02 1| T2C |13 0, (223)

and solutions properties of auxiliary boundary value problems 1 — 3, we will have

(By. whay = p2 | AY2n |3, +2p2 (APT071PCY2¢ AVP) o | T [, +

+o1 | TC | g, = p2 | A2 |1, +2p2 (Al/ZmAl/QTzC)Q +po | AV R, +
2

+ou || TiC [IB,> p2 {(1 —e) || A2 ||, +(1—7h) || AYPTy¢ H?zg} +o1 | TiC 1B, =
=p2 {1 =) [ 76, +A =) [ Te¢ [0, } + o1 1 TiC [, (224)
where ¢ is an arbitrary positive. We also used in (224) the property
| AM2T5¢ |, = ToC 11,05,

see Problem 3 and (96).
Coming back to Problems 1 and 2, observe that the following inequalities are valid
for solutions to these problems:

I T o< T |- I Cll==I To |l - | T T =< T2 |- N T 1] - T
= c ' | i g, c¢>0. (225)

Therefore the right hand side in (224) can be evaluated from below, and we will have

|1791::

By, )y = p2(L =€) |71 &, +o2(1 — ™) + prc®al | ToC [h0, +
+oi(l-a) [ Ti¢|ig,, acR (226)

Take now parameters € and a by such a way that the following relations will be valid:
0<e<l, O<a<l, pl-g)=l-a=(1-cY+pc?pyt=1co>0 (227

It is easy to check that this system of equations has a unique solution, and then we have
(for these ¢ and «) the inequality

~112 2 2
(By, 9y = o {1713, + p2 T2 g, + 1 T3¢0 g, } =

<12
. {||n||é2 ¥ HcHO} — o lylBygy . 0> 0. (225)
Here we also used relation (223). O

Proved properties of the operators B and A show us that problem (218) is connected
with Cauchy problem for hyperbolic equation in Hilbert space H(£2).



Small motions and eigenoscillations of a system ,fluid — gas” in a bounded region 41

6.2. On solvability of the initial boundary value problem for displacements
potentials. Further we use the following well know fact on solvability on Cauchy prob-
lem for equation of the form (218) (see, for instance, [9], pp. 60-63).

Theorem 8. Let in problem (218) the operator B be bounded and positive definite and
the operator A be selfadjoint (generally speaking, unbounded) positive definite. If the
following conditions are valid, namely,

' €D(A), y' e DAY?), F(t) € C'(Ry;H(), (229)
then problem (218) has a unique strong solution for t > 0, i.c., such a function y(t) that
y(t) € D(A), VieR;, Ay(l)e CR:,H(Q),

J(t) € C(Ry, D(AY?)), y'(t) € C(Ry, H(2)),

and equation (218) is valid for t > 0 and initial conditions are valid also.
If instead of (229) conditions

" e D(AY?), e H(Q), F(t) € C(Ry;H(Q)) (230)

hold, then problem (218) has a generalized solution with continuous in t full energy. For
this solution the law of full energy balance take place in the following form

o | IR T R L
t
+%H“41/2 oHH(Q)JFO/(F(s),y’(s))H(m ds. O (231)

Remark 2. If the operator A = G*G then instead of the second condition in (229) one
can take condition y' € D(G) and in (230) D(A'?) must be changed by D(G). O

On the base of Theorem 8 we will prove now some assertions on solvability of the
initial boundary value problems on small motions of a system ,fluid — gas”.

Theorem 9. Let in problem (208) — (211) the following conditions be satisfied:
n’ € D(AY?), nteD(4), ("eDC VB, ('eD(B?),  (232)

Fit,) € C'(Ry: Lal92). (233)
Then problem (208) — (211) has (for t > 0) a strong solution with values in D(AY?) @
D(C~Y2), i.e., such functions n(t) and ((t) that the following properties are valid.
1. n(t) € D(A) and An(t) € C(Ry; D(AY?));
20, (1) + To¢(t) and n(t) € C*(Ry; D(AY?));
30, ((t) € D(B,) and By( € C(Ry; Hy'?);
4. —paPryan(t) + Pr(p1Ca+p2C2)((#) and Pr(prCatp2Ca) Pr((t) € C2(Recs Hy?);
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50 equations (208) and (209) hold, any term in (208) is a function in t with values in
D(AY?) = Hgl22 and any term in (209) is a function in t with values in D(C~1/?) = H%/Q;

6°. initial conditions (210) hold.

If the following conditions are valid,

"’ € D(4), n'eDAY?), ("eDBY?), (teH)=H, (234)
f(t,z) € C(Ry; Ly(9)), (235)

then problem (208) — (209) has a unique solution with continuous full energy, i.e., such

functions that the law of full energy balance (231) holds and any term in this relation is

a continuous function in t € Ry.

Proof. If conditions (232), (233) hold then in problem (218) — (221) (with taking into
account (212)) we have

P eDA), it eDAY?), OepB,c7), & eD(BYCTY). (236)

Further, if f(t,z) € C'(Ry;Ly(Q)) then VFy, = Pyof € CYRy;G()), Fy €
CY(Ry; HY)) and therefore ppAY2F, € CY(Ry;Lagq,) since Hb = D(AY?). Next,
VE = Pips, f € CHRy; Ghys, (1)) and Fy € CH(Ry; HY g (Q)). Therefore

(p1Fy — p2PrFy) e CH Ry HY?) = CH (R4 D(C™Y2)). (237)

Thus, if conditions (232), (233) hold then conditions (229) are valid (see also Remark
2, problem (218)). Therefore, by Theorem 8, problem (218) has a unique strong solution
on R . It means that equations (213) and (214) are valid and any term in these equations
is a continuous in ¢ function with values in the spaces Lo o, and Hy = Lo 1, respectively.

Come back from (213), (214) to system (208), (209) using inverse substitutions (212).
Acting from the left by the (bounded) operator A='/2 to (213) and by the (bounded)
operator C''/2 to (214), we conclude that system of equations (208), (209) hold, and in
(208) any term is a function in t with values in D(AY/?) = H{, and in (209) any term
is a function in ¢ with values in D(C~1/?) = HIE/2. In other words, problem (208), (209)
has a strong solution (7(t);¢(t))* with values in D(AY?) @ D(C~1/2). Note else that
properties

n(t) € C2(R;D(AY?)),  Pr(piCi + paCa) Pr((t) € C*(Ro; HY?) (238)

2
follow from the fact that 4 (By(t)) € C(R4+; H(22)) and invertibility of the operator B

dt?
(Lemma 8).
Proof of existence of the generalized solution to problem (208) — (211) has the same
way and therefore it is absent here. O

Taking into account Theorem 9 we will prove now the theorem on strong solvability
of the initial boundary value problem (55) — (61) for displacement potentials.
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Theorem 10. Let in problem (55) — (61) the following conditions be satisfied:

q)(i) € HilL,Sl (Ql)7 (I)(Q) = (I)gl + (1)327 (239)
oY OPY
®Y, € H} 5, (), 852 = Tnl Ir=: ¢ € D(B,) N HY?, (240)
ADY, € HYy,, @ € Hig (), @5 =P + Dy, (241)
odbl od!
®y, € Hj g, (Q2), 852 Ir= 8—; Ir=: ¢! e D(BY?) = HL, @l eD(A), (242)

ft,) € C'(Ry; Lo(9)). (243)
Then problem (55) — (61) has a unique strong (in t) solutions with values in the space

H' (s p) == {(Po;P1) : 1 € Hjy 5, (1), Py = Doy + Do,

o
Byy € Hi g, () C HY,, ®o1 € Hy,, Adyy € (Hb,), ail =0 (on Ss),
(9(1)21 . 6(1)22 N 8@2 . 8<I>1 1/24 %
o 0 (onT), 3 = B on € (HY™)" (onT) ¢, (244)

i.e., such functions ®1(t,x) and ®o(t,x) that the following properties are valid.

19, (I)Q(t,x) = (1)21(15,.7}) + @22(15.1‘) with A@gl(t,x) € C(R+;H§122) and @22(15,.%’) €
C(R s H} 5, (92));

20, ®y(t,z) € C*(Ry; HY,);

30, for any t > 0 equation (56) holds and any term in it is a continuous function in t

with values in ng ;
2

0o o o
40. @1(1:,.7]) S C(R'f‘?Hf]i,Sl(Ql)) and et § ’F: 2 ’1—‘: 22 ‘FG

on on on
C(Ry; D(C™'?By,));
50, ®1(t,x) and Pr®s(t,x), x € T, belong to the space CQ(]R+;H1£/2) and equation
(59) holds for any t > 0;
6°. initial conditions (60), (61) hold, i.e.,
0

®;(0,z) = ®Y(x), ac1>l-(o,a;) =®l(x), 2€Q;i=1,2 (245)

Proof. If conditions (239) — (243) hold then, as it is easy to see, initial conditions (232),
(233) are valid in problem (208) — (211). Indeed, according to Subsection 3.2 (see (98)),
we have

(I)Q(t, ZL‘) = 09 (t, x) + (1)22(t, .7}), Doy9 (t, ZL‘) = TQC(t, ZL’) (Problem 2), (246)

o1 (t, ) =:n(t,x) (see (100)), Pq(t,x) =T1((t,x) (Problem 1). (247)
It follows from (246), (247) and (239) — (243) that all conditions of Theorem 9 are
fulfilled. In particular, n(0) = n° € D(A%?) since An® = —A®Y, € H}, = D(AY?),
(0 e D(C~Y2B,), (' € D(BY?), nt = B, € D(A) and (243) is the same as (233).
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It follows from Theorem 9 that problem (208) — (211) has a unique strong solution with
values in D(A'/?) @ D(C~'/2). Then n(t) = ®9(t,x) € C(Ry;D(A%?)) and An(t) =
—ADy(t,z) € C(Ry; H&h) Next, since ((t) € C(R,; D(C~/2B,)) then, using solutions
properties of auxiliary Problems 1 and 2, we conclude that

Doy (t,2) = To((t) € C(Ry; Hy 6,(R2),  ®1(t,2) = Ti((t) € C(Ry; Hyy g, ().
Therefore
(I)Q(t, .’L‘) = Py (t, :L“) + @22(75, :L‘) S C(R+; Hglb),
A@g(t,:r) = Ady (t,x) S C(R+; Hglb)
From equation (208) and Theorem 8 it follows also that
Dy(t,z) = n(t) + Tol(t) = Par(t,x) + Po(t, z) € C*(Ry; HY,), (248)
and from equation (209) we see that
—paPryan(t) + Pr(piCh + paCa) Pr((t) + Pr(pa®1 — pa®a) € C2(Ry; HY?),
Pr(p1®1 — pa®2) € C2(Ry; HY?) (249)
(see (238)). It follows from (248) and embedding theorem that @ |p€ CQ(R+;H1£/2).
Then from (249) we conclude that ®; |[r€ C%(Ry; H%/ ?). Besides, we know that
0P, 0Py 0Po9
Ir= r=
on on on

Note, at last, that introduced functions @1 (¢, x) and ®2(t, x) are solutions to equation

Ir=:((t) € C(Ry; D(C™V2B,)). (250)

(55) and (56) (all terms in (56) are continuous in ¢ functions with values in H, ),

kinematic condition (59) (all terms are from C(]RJF;H%/ 2)) and boundary conditions
(57). Besides, initial conditions to problem (55) — (61) are fulfilled. O

6.3. On solvability of the initial boundary value vector problem. Above proved
theorems give us opportunity to prove theorem on unique solvability of an initial bound-
ary value vector problem (8) — (15) on small motions of a hydrosystem ,fluid — gas”.

Theorem 11. Let in problem (8) — (15) the following conditions be fulfilled,

@) = Vo) + P € La(Q1), V) € Ghs, (), (251)
W = VO + P o} € Ly(), VO € Ghg (), (252)
WY = VY + Py € Ly(Qy), VB € G(Qy), (253)
Wy = V®L + Pyoiy € Ly(Q), VEL € G(Q), (254)
feC (Ry; La()), (255)

where initial potentials @?, q)}, i = 1,2, have, as in Theorem 10, properties (239) —
(242).

Then problem, (8) - (15) has a unique strong solution with values in the space Ly(Q) :=
Lo() @ La(Qw). Namely, there exist functions @;(t, x), pi(t,x), i = 1,2, such that
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equations (8) and (9) hold; all terms in the first equation (8) are functions in t with
values in Eg(Ql); all terms in the first equation (9) are functions to in t with values in
Lo(Q); all terms in the second equation (9) are functions in t with values in H}h.

Further, kinematic condition (11) holds in the space C(R,; D(C~1/2By)) (i.e., B,C €
C(R4; HI{/Q)), dynamic condition (12) hods in C(Ry; Hll/2), and initial conditions (15)
are fulfilled.

Proof. 1). It follows from (255) and (251), (252) that problem (31) has a unique solution

t
vy = Py o) + / Py o + / Piof(&)de | ds =
0

0
t s
—pro [ +tat+ [ ds [ Fode )| e o) (256)
o0
and, by (32),
Vi :=pProrf € CH(Ry; Gor()). (257)

2). Similarly, from (41) we have
t s
Ty = Pog | @+t + / ds / Fle)de | e C3(Ry: Jo(22)). (258)
0 0

3). Since initial potentials ®9, ®}, i = 1,2, have properties (239) — (242) (and by

77

(255)), then assertions of Theorem 10 hold. In particular, ®o(t, z) € C*(Ry; HY,,). There-
fore,

82
VPQ = p2 ({%QV(I)Q — VFQ) S C(R+; G(QQ)), (259)

and then equation (40) holds and any term in it is a function in ¢ with values in

—

C(R; G(2)).
4). It follows from this property and equation (59) that

Oy |p=: @1 € C2(Ry; HL?). (260)
Consider now auxiliary Zaremba problem
. 0%,
APy =0 (in ), = 0(onS), @3 =¢; (onl). (261)

It is known (see, for instance, [9], p. 107), that problem (261) has a unique generalized
solution ®; € H} 5, (€1) if and only if ¢; € H%/ ?. Moreover, if condition (260) holds
then

Py € C*(Ry; Hp)). (262)
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5). Taking into account (262) and property VF; = Pl,h,Slf € CYRy;Ghs (1)),
introduce, by (33),

2

Vp, = mVF V®, € C(Ry;Ghs, (). (263)

—p1 92
Then all equations (31) — (33) are valid for ¢ > 0 and all terms in these equations are

continuous functions in ¢ with values in Jo(1), éo?r‘(ﬂl) and éh751(91), respectively.
From this it follows that functions

@ =T +V®, Vp =Vp, + Ve (264)

(see (27) — (30)) are solutions to equation (8) and all terms in it are functions in ¢ with
values in Ly(€;). Besides, the second condition in (8) is also valid.
6). Introduce
wWo = U + VPy (265)
and use properties (258), (259). Then we see that the first equation (9) holds and each
term is a function in ¢ with values in Lo(£s). Besides, the second equation (9) is valid
with terms from C'(Ry; HéZ)
7). It follows from (250) that
= (W - A)p = (W A)r =) =[5 C(Ry;D(CTY2B,)). (266
¢ = (e = (G2) = (F2) € C®aDE ). (200
Then By € C(Ry; D(C~Y/2)) = C(Ry; HY'?) and, by (263) — (265), (45), (59),
(1 = p2)r = Lo¢ € C(Rs H?). (267)
8). Thus, all equations (8) — (15) hold. In particular, ¢ € D(B,) and therefore condi-

tion (14) is valid; initial conditions (15) are also fulfilled by (256), (60), (61).
This proves the theorem. O

As a corollary of the Theorem 11 we have the following result.

Theorem 12. If conditions of Theorem 11 are fulfilled then the law on full energy balance
in the form (20) is valid, and this energy is a continuous function in t > 0.
If the following conditions,

(ﬁg;wl) S G:(Q), div 1178 € LQ(QQ),
W=7 e DBYY) = B, 1) € C(R,; a(@), (268)

hold, then problem (8) — (15) has a generalized solution with continuous full energy, and
the law (20) also holds for this solution.

Proof. 1). If conditions of Theorem 11 are fulfilled, then we can repeat the same
transforms as in Subsection 2.2 and receive the law of full energy balance in the form

(20).
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2). Proof of the second part of the theorem follows from the fact that generalized
solutions with continuous full energy can be received on any segment [0,7] by limit
transition from initial conditions (251) — (255), corresponding to strong solutions, to
initial conditions (268), corresponding to generalized one. We remark only that the
second condition (267) is equivalent to condition pa(x,0) € Lo q,. O

6.4. Fourier series. On the base of Theorems 10 and 11 on existence of strong solutions
initial boundary value problems (55) — (61) and (8) — (15) and on the base of Theorems
6, 7 on basis properties of the system of eigenfunctions to spectral problems (63) — (68)
and (187) — (189) we can receive Fourier series for solutions to problem (55) — (61).

Remember, that eigenfunctions @y, := (Pox; P11), K = 1,2, ..., to problem (63) — (68)
are solutions to the following spectral problem:

Ady, =0 (in Q1), —Ady, = \pc 2Dy (in Q), (269)
6<I>1k o 8<I>2k o 8<I>1k . 6<I>2k .
5 =0 (on Sy), 5. =0 (on S), o o =G (onT), (270)

G = M B P (p1 @1y, — pa®ayr) (on T), /gk dl' =0, /%k dQy = 0. (271)
I Qo

These functions form an orthogonal basis in H1(£2; p) (with squared norm (176)) and
have the following conditions on orthonormality:

2
me / V&1 - V@ dQp, = 0, (272)
=1 g

pac 2 / Do, - Doy d22 + / B Pr(p1®1y — pa®or)] - [Pr(p1 @y — poa®y)]dl = )‘izlékl'

Qo T
(273)

Consider for simplicity the initial boundary value problem (55) — (61) for the case
of free motions, i.e., f(t, x) = 0. Then Fi(t,x) = 0, Fy(t,z) = 0. Represent solution
O = (Py(t, z); P1(t,x))! to problem (55) — (61) in the form

(I)Q (t, x) > (pgk ((L‘)
=Nt , 274
(@1(t,a:) ) ; #(®) ((I)lk(a;) (274)
where ¢ (t) are anknown functions and ®; = (Por; P11), k = 1,2, ..., are solutions to
spectral problem (269) — (271) with properties (272), (273).
We put functions @ (¢, x) and (¢, x) from (274) into equations (55), (56) and bound-

ary conditions (57), (58). Further, we multiply the first relation on —p;®y; and integrate
over {1y, the second one on pa®9; and integrate over (9. Finally, we act by B L from
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the left in (59), multiply on (p1®1x — p2Pox) and integrate over I'. Using also boundary
conditions (270), (271), we have

> 0P
0= ch(t) P1/V<I>1k V& dy —Pl/ alk@u arj,
k=1 &, 2

0= [eh(e 20 [ Bar- @ud +n(t) / Vy, - Vo + / 2oy | |
k=1 O

0=3 1) / B [Pr(pi®us — pa®oi)|[Pr(pi®ys — paboy)] T+
k=1

o

(9<I>
E 1k (p1®1; — p2Py) dl.
k=1 2

Adding the left and the right parts of these relations we receive the equality

0= a() o [ Vou-Veudti+p [ VEu - Va0 |+

oo

+> () | pac? / Do Po d2s + /Bgl[Pr(Pl‘I’lk — p2@o)|[Pr(p1®P1 — p2Po)ldl |,
2

that with taking into account (272), (273) gives the equations

at)+ N1 t) =0, 1=12,....

From this it follows that

cx(t) = crocos(wit) + cpr sin(wgt), wrp =V, k=1,2,..., (275)
and therefore the formal solution to problem (55) — (59) has the form
@2(75, l‘) > . q)gk (l‘)
= (Wit t . 276
(q)l(t, .’E) ) E(ckocos(wk‘ ) + Ck1 Sln(wk‘ )) (‘I)1k($) ( )
One can find coefficients {cro}32; and {cg1}72, using the initial conditions (60), (61):
0
®;(0,z) = ®Y(x), a<1>Z~(o,g;) =®l(x), i=1,2. (277)

We have
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and, by (272),
2 2
=Y pj / Vo)V dQYy, Br=> p /v<1>} -V, dQ;. (279)
Jj=1 Qg j=1 Qg

Using (278), (279) and initial conditions (277), we have finally

(I)Q(ta x) _ - -1 . ‘I>2k(3:)
<<I>1(t,3:) ) = ; (akcos(wit) + Brwy, ' sin(wit)) <¢1k($) ) _ (280)

This solution is a strong one with values in H!(§; p) if initial functions (277) have
properties as in Theorem 10, i.e., properties (239) — (242).

On the base of the above proved results and (280) one can represent solution to the
initial boundary value vector problem (8) — (15).

6.5. On sufficient condition for instability on small motions of the system
,»fluid — gas”. Remember that up to this moment we used an assumption on statical
stability of the system ,fluid — gas” (see (69)), i.e., the operator B, is positive definite.
Consider now the case when B, is only bounded from below and v < 0 (Lemma 1).
Then, as in Lemma 2 and assertions below, the operator B, has a discrete spectrum
{\e(Bs)}22; C R. But now its eigenvalues have the following properties (with taking
into account its multiplicities)

—00 <Y< AM(By) € ... S AU(By) 0= A1(By) = ... = Aogq(By) <
< Xoeggr1(Bs) < oo S A(Bo) <l (281)
Consider (in assumption, that > > 1, ¢ > 0 in (281)) solutions to homogeneous

problem (218) in the form of the oscillations:
y(t) = e“'y, y e D(A). (282)
Then for amplitude elements y we have the spectral problem
Ay =By, yc€D(A), \=u? (283)

where the operator matrices A and B are defined by (221).
Introduce the operator

Bo = CY2B,c71/? (284)

on the natural set

D(Be) :={C € Lor: ¢ € D(CY?) = HY?, 7V € D(B,), B,C~/* e D(C™1/)}.
(285)
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Lemma 9. The operator Bc has a discrete real spectrum {\i(Bc)}pe, with limit point
+o00. The eigenvalues {\p(Bc)}32, have the same properties as eigenvalues of the oper-
ator B, (see (281)):

—00 <A (Be) < ... <Au(Be) <0=Aep1(Bo) = ... =
= )\%—i-q(BC) < )\%+q+1(BC) <... < )\k(BC) <. (286)

Proof. Consider the eigenvalue problem

Bt =C V2B, c71%¢ = \¢. (287)
If ¢ € D(Bc) then ¢ € D(C~/?) and
Bo& = \CE, €=C"'%¢ e D(B,). (288)

Conversely, if 5 is a solution to equation (288) then ng = B,C~12¢ = \C'% €
D(C~/2) and equation (287) holds.

If A = 0 in problem (288) then £ € KerB, # {0} and therefore A = 0 is a ¢ — multiple
eigenvalue of the operator Be. Introduce the resolution

Lor = Lor ® By,  E,:=KerB, dimE, = q < oo, (289)

and use the fact that in this resolution problem (288) has the form
B,& = \(CE+Cgy), (290)
§:=PE=PEecLyr, &=Pg=Pg, €k, (291)

where P and P, are orthoprojections on the subspaces (289).
If we will act from the left in (290) by the operators P and P, we will have the
following system of equations
By€ = M(PCPE + PCP,), (292)
0 = M(P,CP¢ + P,CP,). (293)
Since A # 0 and P,CP, is a ¢ — dimentional positive operator (¢ x ¢ — matrix) then from
(293) one can find

& = —(P,CP) " (P,CP)E, (294)
and therefore (292) takes the form
B,£ =\C¢, C:=PCP— (PCP,))(P,CP,) Y (P,CP). (295)

Here the operator EU has a trivial kernel, KerB\g = {0}, and Cis a compact and
positive (self — adjoint) operator. (Proof of the last properties see in [9], p. 47 — 48.)
Further, the operator B, has a discrete spectrum

7(Bo) = {M(Bo) Hr U (Bo) g (296)
where {\;(B,)} are eigenvalues (281).
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Represent Eg,p as an orthogonal sum
Lor = B, @ Lo, (297)

where E,, is a » — dimentional subspace with an orthogonal basis {uy(B,)}}_, corre-
sponding to eigenvalues {\y(By)}7_, and Lo is an orthogonal complement (with the
basis {u(Bs)}3Z,.1441)- Then the operator B, has the form

~ ~ (1/2 . 11/2 ~ ~ 1/2
B, = )Bo %‘ A ‘Bo = ((B0)2> , (298)
J,. = diag(—L; 1) = J ' = J.. (299)
It follows from above that ‘EU‘ > 0 and therefore there exist bounded and positive
~ =1 |~ —-1/2
operators ‘BU‘ , | Bo
Thus, problem (295) takes the form
~ [1/2 ~ 11/2 PN
[Bo| " | Ba| €= 2CE, (300)
and after substitution
o 11/2 ~
B,| &= (301)
one can receive the equation
~=1/2 A~ | —1/2 .
Jse <‘Ba ‘ P >77=mz, p=A"" (302)

—1/2 A)A —-1/2

It is evident that here the operator J,, ‘EU

. is a J,, — positive com-

pact operator, i.e., it is self — adjoint and positive in the indefinite scalar product

In other words, problem (302) is a spectral problem in the Pontriagin space II,, for
compact and positive operator. Therefore, by Theorem from [28], see also [29], [30], prob-
lem (302) has exactly sz negative eigenvalues (with account of multiplicities). Another
eigenvalues {uy}72, . | of problem (302) are positive with limit point at 0.

These considerations prove the Lemma, i.e., properties (286). O

On the base of Lemma 9 we come back to problem (283) under assumptions (281).

Theorem 13. If inequalities (281) are fulfilled then problem (283) has exactly » negative
eigenvalues (with account of multiplicities) and exactly q zero — eigenvalues. The other
eigenvalues of problem (283) are positive and have limit point at infinity.

Proof. It is the same as proof of Lemma 9. Namely, we consider problem (283) with

A = diag(c*p24; Be) (304)
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and the operator B from (221) which is bounded and positive definite (see Lemma 8).
Since A > 0 and A~! € &, then the operator A has a discrete spectrum

o(A) = {2 p2i(A)}7y U {An(Be) iy, (305)

where A\;(Bc¢) have properties (286). Therefore one can repeat proof of Lemma 9 not to
equation (288) but to equation (283). It proves the theorem. O

As a corollary of Theorem 13 we have the following resulting assertion.

Theorem 14. (inverse of Lagrange Theorem on Stability).

If the operator B, of potential energy of the system ,fluid — gas” is not statically
stable in linear approximation, i.e., condition (69) is not fulfilled and B, has properties
(281) with >z > 1 and q > 0, then problem (283) has at least one negative eigenvalue
A\ = w? < 0. Therefore there exists solution y(t) to homogeneous problem (218) such that

y(t) =yexp(t/| A]), y € D(A), (306)
i.e., this solution exponentially increases in time. O

6.6. The case of motions of the system ,;heavy fluid — gas”. The considered above
problem contains as a special case the problem on small motions of a system ,heavy fluid
— gas” when surface tension does not taken into account. This last problem is investigated
in [21]. Here we mention briefly corresponding results for the case.

First of all, if surface forces do not act and we must take into account only gravity
then a free surface of a fluid is horizontal at equilibrium state, i.e., it is perpendicular
to direction of gravity action.

Considering small oscillations of the system we must put o = 0 in problem (8) —
(15). In this, we have 7 = €3 on I', L,¢ must be changed by Lo := (p1 — p2)9¢,
because cos(7i, €3) = 1. Besides, condition (14) must be omitted. Therefore the operator
B, |s=0=: By of potential energy has the form (see (51))

By = (p1 — p2)9I, D(Bo) = Lar. (307)

Since the operator By is positive definite (p; — p2 > 0, g > 0) then the system ,heavy
fluid — gas” is statically stable.

In spectral problem (3) — (68) we now must change B, by By, and the functionals
(70) and (123) have the forms

2
ZPk/!V‘I’kQ sy,

pac”? / [ 2 + (1 = p2)9) ™" [ Pr(p1®1 — p2®2)[5
Qo

Fi(®1;®2) =

; (308)
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02/)2/|A‘1>2|2 dQs + (p1 — P2)g/ ¢* dr
s r

Fy(®1;P2) = ; (309)

2
Zpk/\v¢k|2 dSdg

and conditions (124) must be taken into account. The main spectral problem (107) now
has the some form with substitution (g(p; — pz))fl/2 instead of B, /.

For the case 0 = 0 Theorems 1, 2, 3, 4, 5, 6, 7 are valid also (with corresponding
modifications). As in Subsection 5.4, we have here acoustic and surface waves, but now
the asymptotic behavior of the eigenvalues of surface waves has another form.

In problem on strong solvability of an initial boundary value problems (Section 6) we
come again to Cauchy problem (218) for hyperbolic equation in Hilbert space H(2) =
Ly, @ Lo, but now the operator matrix A has not form (221) but a new form

A= diag(pad; (g(pr — p2)) "1 C ) (310)

with
D(A) = D(A) @ D(C™). (311)

It is evident that the operator A is positive definite and self-adjoint on domain D(A).
Therefore Theorems 9 — 12 with new assumptions,

O eDC V) =HY? (‘e L, (312)

and with corresponding simplified assertions hold. For instance, in Theorem 11 we have
instead of (266), (267):

¢ = (i - #)p = (@ - M)y € C(Ry; HY?),

(p1 — p2)r = Pr(p1®1 — pa®2)r = g(p1 — p2)¢ € O(Ry; HY?).

At last, new considered system ,heavy fluid — gas” is dynamical stable, it has a dis-
crete positive spectrum {A;}22,, ie., Ay = wi, where 0 < A\ < Xg < ... < N <
ceoy Ay — 400 (k — 00). It means that all frequencies of oscillations are real.

Remark in conclusion that on the base of problem considered in the paper the authors
plan to investigate correspondent problems on small oscillations for rotating system
consisting of ideal fluid and a gas, viscous fluid and gas, and all the same problems for
nonlinear case.

Authors are thankfull to prof. V.A. Solonnikov for discussions on these problems and
usefull comments.
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